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Abstract: There is an emerging consensus that numerical, executive function (EF), and spatial skills
are foundational to children’s mathematical learning and development. Moreover, each skill has been
theorized to relate to mathematics for different reasons. Thus, it is possible that each cognitive construct
is related to mathematics through distinct pathways. The present study tests this hypothesis. One-
hundred and eighty 4- to 9-year-olds (Mage = 6.21) completed a battery of numerical, EF, spatial, and
mathematics measures. Factor analyses revealed strong, but separable, relations between children’s
numerical, EF, and spatial skills. Moreover, the three-factor model (i.e., modelling numerical, EF, and
spatial skills as separate latent variables) fit the data better than a general intelligence (g-factor) model.
While EF skills were the only unique predictor of number line performance, spatial skills were the
only unique predictor of arithmetic (addition) performance. Additionally, spatial skills were related
to the use of more advanced addition strategies (e.g., composition/decomposition and retrieval),
which in turn were related to children’s overall arithmetic performance. That is, children’s strategy use
fully mediated the relation between spatial skills and arithmetic performance. Taken together, these
findings provide new insights into the cognitive foundations of early mathematics, with implications
for assessment and instruction moving forward.

Keywords: spatial skills; numerical skills; executive function (EF) skills; mathematics; number line
estimation; arithmetic; arithmetic strategies; spatial visualization

1. Introduction

Early mathematics knowledge is a strong predictor of future academic success, life
opportunities, and well-being (Duncan et al. 2007; Reyna et al. 2009; Ritchie and Bates 2013).
For example, mathematics skills at preschool have been shown to predict reading and
mathematics performance in high school (Duncan et al. 2007; Watts et al. 2014). Numerical
knowledge at seven is associated with one’s adult socioeconomic status (SES); a powerful
correlate of many important life outcomes (Ritchie and Bates 2013). The importance of
mathematics is further demonstrated by the fact that for thousands of years and throughout
the world, the learning of mathematics has remained a central goal of education (Karp and
Schubring 2014).

Against this background, there has been an increasing interest in better understanding
the various factors (e.g., social, cultural, cognitive, etc.) that underlie and give rise to
early mathematics skills and knowledge. A better understanding of these factors has the
potential to provide key insights into how children learn mathematics and can be used to
help inform assessment, instruction, and intervention.

The present paper concerns itself with the cognitive foundations of early mathematics.
We examine how numerical, executive function (EF), and spatial skills relate to one another
and mathematics performance. Indeed, each one of these cognitive skills—numerical, EF,
and spatial—has been shown to share strong concurrent and longitudinal relations with
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children’s mathematics performance (Atit et al. 2022; Schneider et al. 2017; Spiegel et al.
2021). Moreover, these relations exist for typical and atypical populations and across a
wide age range (Cragg and Gilmore 2014; Hawes and Ansari 2020; Mix and Cheng 2012;
Rousselle and Noël 2007; Toll et al. 2011). For this reason, these three cognitive skills represent
ideal candidates in the effort to better understand the cognitive “building blocks” of early
mathematics achievement. We review each one of these cognitive skills next, providing a
brief review of the theoretical and empirically demonstrated links between each construct
and mathematics performance.

1.1. Numerical Skills and Mathematics

An understanding of numbers and their relations to one another is critical for mathe-
matics. The theoretical link between early numerical skills and higher-level mathematics is
straightforward: mathematics learning is cumulative in nature; therefore, basic numerical
skills represent the foundation on which more advanced mathematics knowledge is built
upon. For example, understanding cardinality (i.e., understanding the number of elements
in a set) provides the foundation for engaging in basic addition strategies, such as counting
on from the larger of two addends.

Previous research has identified magnitude processing and ordinality as being two
critical components of early numerical skills (Aunio and Niemivirta 2010; Goffin and
Ansari 2016; Nosworthy et al. 2013). Magnitude processing, or one’s ability to discriminate
between quantities, is typically measured by the speed and accuracy to which individuals
can compare and select the largest of two numerical magnitudes (6 vs. 3 or
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representation of number (Dehaene 2011; Moyer and Landauer 1967; Siegler 2016). An
extensive body of research suggests that children and adults who are faster and more
accurate at comparing numerical symbols (6 vs. 3) and, to less of an extent, nonsymbolic
numbers (
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), tend to also perform better on higher-level mathematics tasks, such as
arithmetic (see Schneider et al. 2017 for a meta-analysis).

Ordinality, or one’s understanding of the order of number sequences, is another
important indicator of an individual’s basic number skill. In general, children and adults
who are faster and more accurate at identifying and producing ordered numerical sequences
(e.g., 5-6-7) also tend to demonstrate higher-level mathematical skills (Lyons et al. 2014; Xu
and LeFevre 2021). Moreover, ordinality skills have been found to predict mathematics
achievement independent of magnitude processing skills (Goffin and Ansari 2016).

In short, children’s magnitude and ordinality skills represent foundational numerical
skills and are considered precursors to more advanced mathematical reasoning, including
arithmetic. It is for this reason that the present study included these measures—magnitude
comparison and ordinality—as key indicators of children’s basic numerical skill.

1.2. Executive Function and Mathematics

In general, stronger EF skills have been associated with stronger mathematics perfor-
mance (Cragg and Gilmore 2014; Emslander and Scherer 2022; Spiegel et al. 2021). The rea-
sons for this link are varied and appear to depend on the EF and mathematics skills under
question. One’s definition of EF also matters. Here, we defined EF using Miyake et al.’s
(2000) tripartite model, that is, as a cognitive construct that includes three highly related yet
separable cognitive capacities, including working memory, inhibitory control, and flexible
attention (see also Friedman and Miyake 2017). Each one of these components has been
linked to mathematics performance for different reasons (Cragg et al. 2017; Cragg and
Gilmore 2014). That said, many studies find that EF is better represented by a one-factor
model in childhood (Brydges et al. 2012; Duncan et al. 2016; Wiebe et al. 2011; Willoughby
et al. 2012). It is this framework that guides the current study, as we combine EF skills
into one overall latent EF factor. For example, when solving a mental arithmetic problem
with multiple components (e.g., 15 + 8 − 2), a child would be required to hold the different



J. Intell. 2023, 11, 221 3 of 18

components of the problem in mind and switch between different strategies or mental
operations, requiring multiple aspects of EF within the same problem.

Taken together, there is both strong theoretical and empirical evidence to suggest that
EF skills play a strong supporting role in mathematical reasoning. In the present study,
we measured EF as a single construct, measured using a visual–spatial working memory
task (forward and backwards path span) and a more holistic measure (head–toes–knees–
shoulders task) which requires all three components of EF (McClelland and Cameron 2012;
Miyake et al. 2000).

1.3. Spatial Skills and Mathematics

A large body of evidence indicates consistent and robust associations between spatial
and mathematical thinking (e.g., see Atit et al. 2022; Mix and Cheng 2012). A meta-analysis
by Hawes et al. (2022) further suggests a causal relation between the two. It is important to
acknowledge, however, that both spatial thinking and mathematics are multidimensional
constructs. Thus, the relations that exist between the two may depend on the spatial skills
and mathematics in question. Spatial visualization skills, defined as the ability to generate,
retrieve, maintain, and manipulate visual–spatial information (Lohman 1996), appear to
play a particularly important role in mathematics learning and performance. Indeed,
spatial visualization skills have been linked to success across a wide range of mathematical
domains, spanning basic numerical processing and arithmetic all the way up to highly
advanced mathematics (Hawes et al. 2019; Casey et al. 2015; Wei et al. 2012).

Why are spatial and mathematical thinking related? Several accounts have been put
forward (e.g., see Hawes and Ansari 2020; Mix 2019). According to the spatial modeling
account, spatial thinking and mathematics are linked through the affordances of spatial
visualization; that is, spatial visualization may serve as a “mental blackboard” on which
various mathematical concepts, relations, and operations can be modeled and visualized
(Lourenco et al. 2018). For example, individuals may draw on their visualization skills
to organize and model the various elements of a word problem. According to the spatial
representation of numbers account, numbers are represented spatially, from smallest to largest,
left-to-right (at least in cultures that read/write left-to-right), along a “mental number line”
(Dehaene et al. 1993; Patro et al. 2016). A common index of one’s mental number line involves
presenting individuals with an empty number line (i.e., a horizontal line flanked with 0
at the far-left end and another number, such as 100, flanked at the other end) and having
them estimate the exact location of a given number (e.g., Where does 67 belong?). Lastly,
according to the working memory account, the relation between spatial skills and mathematics
may be due to other variables, such as working memory, EFs, or general intelligence, which
share and explain the majority of variance between spatial and mathematical thinking.
For example, it is possible that EF skills, including visual–spatial working memory, fully
account for the relations previously observed between spatial visualization and mathematics
performance. A central aim of the present study is to provide new insights into the three
mechanisms just described.

To summarize, there are both theoretical and empirical reasons why spatial visualiza-
tion may play an important role in mathematics learning and performance. For this reason,
spatial visualization was targeted as the spatial skill of interest in the current investigation.

1.4. Unique Contributions of Numerical, Executive Function, and Spatial Skills

As just revealed, current evidence indicates that numerical, EF, and spatial skills each
play an important role in mathematics learning and performance. Moreover, each skill
appears to be related to mathematics for different reasons. Thus, it is possible that each
cognitive construct is related to mathematics through distinct pathways. At the same time,
there is also evidence to suggest that that these three variables may be highly related to
one another, and in some cases, indistinguishable from one another, or perhaps better
accounted for by a single latent intelligence factor (i.e., g). For example, Miyake et al. (2001)
found that latent factors representative of spatial visualization and EF skill were very highly
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related to one another. There is very little work investigating the unique contributions of
all three skills within the same model. As such, little is known about whether and how
these foundational skills are related to one another at the latent level and whether each is
uniquely related to mathematics achievement.

One exception—and one the present study aims to extend—is a study by Hawes et al.
2019. They found that while numerical, EF, and spatial skills all represented separate con-
structs, only numerical and spatial skills were uniquely predictive of mathematics achieve-
ment, with especially strong relations between spatial visualization skills and mathematics.
In that study, mathematics was assessed using two broad-scale measures of numeration and
geometry. However, given the multifaceted nature of mathematics, these two measures are
certainly not representative of all mathematics achievement. As noted above, the relations
between these variables (numerical, EF, and spatial skills) may depend on the mathematics
at hand. For example, spatial visualization skills have been found to share stronger associ-
ations with mathematics problems that are novel and unfamiliar to the learner (Mix et al.
2016). Indeed, this was offered as one of the explanations for why spatial visualization was
found to be the most robust correlate of mathematics achievement in the Hawes et al. (2019)
study; both mathematics measures featured applied, novel problems.

Among the unique contributions of the current study is the focus on more targeted
measures of mathematics achievement: number line estimation and arithmetic. These out-
come measures differ from the mathematics outcomes measures used in Hawes et al. (2019)
in two important ways. First, they target more familiar mathematical content and proce-
dures. Second, they contain less overtly spatial mathematics problems: both the numeration
and geometry measures used in the 2019 study involved the presentation of items through
visual–spatial representations (e.g., reasoning about graphs, shapes, arrays, etc.), with
many items requiring explicit spatial reasoning (e.g., identifying a figure given the front,
side, and top views). Together, these two factors may have led to an overestimation of the
importance of spatial skills for mathematics learning and performance.

1.5. Current Study

The present study examines the relations between numerical, EF, spatial skills and
mathematics. A central aim is to test the extent to which the findings observed in the Hawes
et al. (2019) study extend to different measures of mathematics used in the current study.
Whereas Hawes et al. (2019) found that spatial and, to a lesser extent, numerical skills
were unique predictors of mathematics, it remains possible that these results were due to
the types of mathematics assessments used. Indeed, there is reason to predict that each
foundational skill—numerical, EF, and spatial—provides unique and important pathways
to mathematics success. The present study aims to tests this possibility, providing further
insight into the cognitive building blocks of early mathematics.

2. Materials and Methods
2.1. Participants

One-hundred and eighty 4- to 9-year-olds (Kindergarten—Grade 3) participated in the
study (mean age = 6.21, SD = 1.38; girls = 96, boys = 84). A portion of these participants (65%)
also participated in Hawes et al. (2019). The sample was drawn from three urban elementary
schools in Southwestern Ontario, Canada. All three schools are located in low-income
neighborhoods (based on Canadian census data) and were considered low-performing
schools in mathematics at the time of this study (according to standardized provincial
test score data). Written consent was provided by a parent/guardian for all children, and
research was carried out in agreement with the ethics boards of the University of Toronto,
University of Western Ontario, and the local public school board.

2.2. Measures and Procedure

A shown in Table 1, participants completed a total of 11 measures. Measures were
completed in pseudo-random order. That is, certain measures were presented in ordered
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blocks: symbolic number comparison, nonsymbolic number comparison, and ordering; path
span forward and path span reverse. Measures were completed in two approximately 30 min
sessions, between 1 and 5 days apart. All measures were administered one-on-one with a
trained experimenter in a quiet location within the child’s school (e.g., empty classrooms or
private testing rooms).

Table 1. Description of measures used in the study.

Measures Task Description Example Items

Numerical Measures

Symbolic Number Comparison
• Participants select the numerically larger of two

Hindu-Arabic numerals
• 1 min to complete as many items as possible

J. Intell. 2023, 11, x FOR PEER REVIEW 5 of 21 
 

 

provincial test score data). Written consent was provided by a parent/guardian for all chil-
dren, and research was carried out in agreement with the ethics boards of the University 
of Toronto, University of Western Ontario, and the local public school board.  

2.2. Measures and Procedure 
A shown in Table 1, participants completed a total of 11 measures. Measures were 

completed in pseudo-random order. That is, certain measures were presented in ordered 
blocks: symbolic number comparison, nonsymbolic number comparison, and ordering; 
path span forward and path span reverse. Measures were completed in two approxi-
mately 30 min sessions, between 1 and 5 days apart. All measures were administered one-
on-one with a trained experimenter in a quiet location within the child’s school (e.g., 
empty classrooms or private testing rooms). 

Table 1. Description of measures used in the study. 

Measures Task Description Example Items 

Numerical Measures    

Symbolic Number 
Comparison  

• Participants select the numerically larger of 
two Hindu-Arabic numerals 

• 1 min to complete as many items as possible    

Nonsymbolic Number 
Comparison  

• Participants select the numerically larger of 
two dot arrays  

• 1 minute to complete as many items as possi-
ble  

 

Ordering  
• Participants indicate whether or not a se-

quence of numerals are in numerical order  
• 1 min to complete as many items as possible  

 

Executive Function 
Measures  

   

Head-Toes-Knees-
Shoulders  

• Participants touch the opposite body part of 
the one instructed  

“When I say touch your 

head, I really want you 

to touch your toes” 

Nonsymbolic Number
Comparison

• Participants select the numerically larger of
two dot arrays

• 1 minute to complete as many items as possible

J. Intell. 2023, 11, x FOR PEER REVIEW 5 of 21 
 

 

provincial test score data). Written consent was provided by a parent/guardian for all chil-
dren, and research was carried out in agreement with the ethics boards of the University 
of Toronto, University of Western Ontario, and the local public school board.  

2.2. Measures and Procedure 
A shown in Table 1, participants completed a total of 11 measures. Measures were 

completed in pseudo-random order. That is, certain measures were presented in ordered 
blocks: symbolic number comparison, nonsymbolic number comparison, and ordering; 
path span forward and path span reverse. Measures were completed in two approxi-
mately 30 min sessions, between 1 and 5 days apart. All measures were administered one-
on-one with a trained experimenter in a quiet location within the child’s school (e.g., 
empty classrooms or private testing rooms). 

Table 1. Description of measures used in the study. 

Measures Task Description Example Items 

Numerical Measures    

Symbolic Number 
Comparison  

• Participants select the numerically larger of 
two Hindu-Arabic numerals 

• 1 min to complete as many items as possible    

Nonsymbolic Number 
Comparison  

• Participants select the numerically larger of 
two dot arrays  

• 1 minute to complete as many items as possi-
ble  

 

Ordering  
• Participants indicate whether or not a se-

quence of numerals are in numerical order  
• 1 min to complete as many items as possible  

 

Executive Function 
Measures  

   

Head-Toes-Knees-
Shoulders  

• Participants touch the opposite body part of 
the one instructed  

“When I say touch your 

head, I really want you 

to touch your toes” 

Ordering
• Participants indicate whether or not a sequence of

numerals are in numerical order
• 1 min to complete as many items as possible

J. Intell. 2023, 11, x FOR PEER REVIEW 5 of 21 
 

 

provincial test score data). Written consent was provided by a parent/guardian for all chil-
dren, and research was carried out in agreement with the ethics boards of the University 
of Toronto, University of Western Ontario, and the local public school board.  

2.2. Measures and Procedure 
A shown in Table 1, participants completed a total of 11 measures. Measures were 

completed in pseudo-random order. That is, certain measures were presented in ordered 
blocks: symbolic number comparison, nonsymbolic number comparison, and ordering; 
path span forward and path span reverse. Measures were completed in two approxi-
mately 30 min sessions, between 1 and 5 days apart. All measures were administered one-
on-one with a trained experimenter in a quiet location within the child’s school (e.g., 
empty classrooms or private testing rooms). 

Table 1. Description of measures used in the study. 

Measures Task Description Example Items 

Numerical Measures    

Symbolic Number 
Comparison  

• Participants select the numerically larger of 
two Hindu-Arabic numerals 

• 1 min to complete as many items as possible    

Nonsymbolic Number 
Comparison  

• Participants select the numerically larger of 
two dot arrays  

• 1 minute to complete as many items as possi-
ble  

 

Ordering  
• Participants indicate whether or not a se-

quence of numerals are in numerical order  
• 1 min to complete as many items as possible  

 

Executive Function 
Measures  

   

Head-Toes-Knees-
Shoulders  

• Participants touch the opposite body part of 
the one instructed  

“When I say touch your 

head, I really want you 

to touch your toes” 

Executive Function Measures

Head-Toes-Knees-Shoulders
• Participants touch the opposite body part of the

one instructed
“When I say touch your
head, I really want you

to touch your toes”

VSWM - Forward Path Span

• Participants are presented with a random sequence
of green dots on an iPad screen and watch as
individual dots light up one at a time

• Participants recall the exact sequence

J. Intell. 2023, 11, x FOR PEER REVIEW 6 of 21 
 

 

VSWM - Forward Path 
Span  

• Participants are presented with a random se-
quence of green dots on an iPad screen and 
watch as individual dots light up one at a 
time  

• Participants recall the exact sequence     

VSWM - Reverse Path 
Span  

• Participants are presented with a random se-
quence of green dots on an iPad screen and 
watch as individual dots light up one at a 
time  

• Participants recall the exact sequence but in 
reverse order in which they occurred  

Spatial Measures      

Visual-Spatial  
Reasoning  

• Participants are presented with 4 different 
types of ‘spatial puzzles’ requiring partici-
pants to visualize solutions to partially com-
pleted puzzles, composition/decomposition 
tasks, and mental paper folding challenges   

  

“Which three pieces will go 

together to make the shape 

above?” 

2D Mental Rotation  
• Participants select amongst four options a 

given shape that can be made by mentally ro-
tating and translating two separated shapes    

Raven’s Matrices  

• Participants are presented with a partially 
completed image or visual-spatial pattern 
and must select amongst 6 options the piece 
that best completes the image/pattern    

Mathematics 
Measures  

   

Addition  
• 12 addition problems of increasing difficulty 

presented to child aurally  e.g., 2 + 1 … 8 + 7  

VSWM - Reverse Path Span

• Participants are presented with a random sequence
of green dots on an iPad screen and watch as
individual dots light up one at a time

• Participants recall the exact sequence but in reverse
order in which they occurred

J. Intell. 2023, 11, x FOR PEER REVIEW 6 of 21 
 

 

VSWM - Forward Path 
Span  

• Participants are presented with a random se-
quence of green dots on an iPad screen and 
watch as individual dots light up one at a 
time  

• Participants recall the exact sequence     

VSWM - Reverse Path 
Span  

• Participants are presented with a random se-
quence of green dots on an iPad screen and 
watch as individual dots light up one at a 
time  

• Participants recall the exact sequence but in 
reverse order in which they occurred  

Spatial Measures      

Visual-Spatial  
Reasoning  

• Participants are presented with 4 different 
types of ‘spatial puzzles’ requiring partici-
pants to visualize solutions to partially com-
pleted puzzles, composition/decomposition 
tasks, and mental paper folding challenges   

  

“Which three pieces will go 

together to make the shape 

above?” 

2D Mental Rotation  
• Participants select amongst four options a 

given shape that can be made by mentally ro-
tating and translating two separated shapes    

Raven’s Matrices  

• Participants are presented with a partially 
completed image or visual-spatial pattern 
and must select amongst 6 options the piece 
that best completes the image/pattern    

Mathematics 
Measures  

   

Addition  
• 12 addition problems of increasing difficulty 

presented to child aurally  e.g., 2 + 1 … 8 + 7  

Spatial Measures

Visual-Spatial Reasoning

• Participants are presented with 4 different types of
‘spatial puzzles’ requiring participants to visualize
solutions to partially completed puzzles,
composition/decomposition tasks, and mental
paper folding challenges

J. Intell. 2023, 11, x FOR PEER REVIEW 6 of 21 
 

 

VSWM - Forward Path 
Span  

• Participants are presented with a random se-
quence of green dots on an iPad screen and 
watch as individual dots light up one at a 
time  

• Participants recall the exact sequence     

VSWM - Reverse Path 
Span  

• Participants are presented with a random se-
quence of green dots on an iPad screen and 
watch as individual dots light up one at a 
time  

• Participants recall the exact sequence but in 
reverse order in which they occurred  

Spatial Measures      

Visual-Spatial  
Reasoning  

• Participants are presented with 4 different 
types of ‘spatial puzzles’ requiring partici-
pants to visualize solutions to partially com-
pleted puzzles, composition/decomposition 
tasks, and mental paper folding challenges   

  

“Which three pieces will go 

together to make the shape 

above?” 

2D Mental Rotation  
• Participants select amongst four options a 

given shape that can be made by mentally ro-
tating and translating two separated shapes    

Raven’s Matrices  

• Participants are presented with a partially 
completed image or visual-spatial pattern 
and must select amongst 6 options the piece 
that best completes the image/pattern    

Mathematics 
Measures  

   

Addition  
• 12 addition problems of increasing difficulty 

presented to child aurally  e.g., 2 + 1 … 8 + 7  

“Which three pieces will go
together to make the

shape above?”

2D Mental Rotation
• Participants select amongst four options a given

shape that can be made by mentally rotating and
translating two separated shapes

J. Intell. 2023, 11, x FOR PEER REVIEW 6 of 21 
 

 

VSWM - Forward Path 
Span  

• Participants are presented with a random se-
quence of green dots on an iPad screen and 
watch as individual dots light up one at a 
time  

• Participants recall the exact sequence     

VSWM - Reverse Path 
Span  

• Participants are presented with a random se-
quence of green dots on an iPad screen and 
watch as individual dots light up one at a 
time  

• Participants recall the exact sequence but in 
reverse order in which they occurred  

Spatial Measures      

Visual-Spatial  
Reasoning  

• Participants are presented with 4 different 
types of ‘spatial puzzles’ requiring partici-
pants to visualize solutions to partially com-
pleted puzzles, composition/decomposition 
tasks, and mental paper folding challenges   

  

“Which three pieces will go 

together to make the shape 

above?” 

2D Mental Rotation  
• Participants select amongst four options a 

given shape that can be made by mentally ro-
tating and translating two separated shapes    

Raven’s Matrices  

• Participants are presented with a partially 
completed image or visual-spatial pattern 
and must select amongst 6 options the piece 
that best completes the image/pattern    

Mathematics 
Measures  

   

Addition  
• 12 addition problems of increasing difficulty 

presented to child aurally  e.g., 2 + 1 … 8 + 7  

Raven’s Matrices

• Participants are presented with a partially
completed image or visual-spatial pattern and must
select amongst 6 options the piece that best
completes the image/pattern

J. Intell. 2023, 11, x FOR PEER REVIEW 6 of 21 
 

 

VSWM - Forward Path 
Span  

• Participants are presented with a random se-
quence of green dots on an iPad screen and 
watch as individual dots light up one at a 
time  

• Participants recall the exact sequence     

VSWM - Reverse Path 
Span  

• Participants are presented with a random se-
quence of green dots on an iPad screen and 
watch as individual dots light up one at a 
time  

• Participants recall the exact sequence but in 
reverse order in which they occurred  

Spatial Measures      

Visual-Spatial  
Reasoning  

• Participants are presented with 4 different 
types of ‘spatial puzzles’ requiring partici-
pants to visualize solutions to partially com-
pleted puzzles, composition/decomposition 
tasks, and mental paper folding challenges   

  

“Which three pieces will go 

together to make the shape 

above?” 

2D Mental Rotation  
• Participants select amongst four options a 

given shape that can be made by mentally ro-
tating and translating two separated shapes    

Raven’s Matrices  

• Participants are presented with a partially 
completed image or visual-spatial pattern 
and must select amongst 6 options the piece 
that best completes the image/pattern    

Mathematics 
Measures  

   

Addition  
• 12 addition problems of increasing difficulty 

presented to child aurally  e.g., 2 + 1 … 8 + 7  



J. Intell. 2023, 11, 221 6 of 18

Table 1. Cont.

Measures Task Description Example Items

Mathematics Measures

Addition
• 12 addition problems of increasing difficulty

presented to child aurally e.g., 2 + 1 . . . 8 + 7

Number Line

• Participants are given an empty number line
bounded by 0 and 10 or 100 (depending on the age
of the children) and asked to indicate the locations
of different numbers (e.g., where does 9 go?)
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Note that for copyright reasons, the example item for Raven’s matrices was reproduced and does not constitute a
direct replica of an actual test item. VSWM = visual-spatial working memory.

2.2.1. Numerical Assessments

For all numerical assessments, children were given 1 min to complete as many items
as possible. Scores were derived by subtracting the total number of errors from the total
number of correct responses. For additional details regarding the development of these
measures and their validity in assessing mathematics, see Nosworthy et al. (2013).

Symbolic comparison: Children crossed off the larger of two adjacent symbolic numbers
as quickly and accurately as possible (e.g., 6 vs. 3). The task consisted of 72 items.

Nonsymbolic comparison: Children crossed out the larger of two dot adjacent arrays as
quickly and accurately as possible (e.g., six dots vs. three dots). The task consisted of 72 items.

Ordering task: Children were presented with a numerical sequence (e.g., 3-4-5) and
indicated whether or not the sequence was in order (i.e., ascending, from smaller to larger
numbers). Children put a line through a checkmark to indicate sequences believed to be in
the correct order and a line through an ‘X’ when the order was believed to be in the wrong
order. The task consisted of 48 items (for more details on this task, see Hutchison et al. 2022).

2.2.2. Spatial Assessments

2-D Mental Rotation Task: This measure was adapted from the Children’s Mental Trans-
formation Task (Levine et al. 1999), a widely used measure of children’s mental rotation skills
(e.g., see Ehrlich et al. 2006; Hawes et al. 2015). The measure consisted of 16 items. For each
item, children were presented with two halves of a 2D shape, which had been separated and
rotated 60◦ from one another on either the same plane (direct rotation items) or diagonal
plane (diagonal rotation items). Children were also shown four other shapes and asked to
indicate which of the shapes can be made by putting the two halves together. Children were
awarded a point for each correct response and a total score out of 16.

Visual–Spatial Reasoning Task: This measure was adopted from Hawes et al. (2017) and
provides a comprehensive measure of children’s spatial visualization skills. The measure
consisted of 20 items divided into four types of spatial visualization problems: missing
puzzle pieces (two variations), mental paper folding, and composition/decomposition
of 2D shapes. In each problem, children were presented with the problem and asked to
identify the correct answer among four options. Children were awarded a point for each
correct response and a total score out of 20.

Raven’s Matrices: This is a widely used measure of children’s visual–spatial analogical
reasoning and general intelligence (Raven 2008). Previous research has found that perfor-
mance on the task is closely linked to the latent construct of spatial visualization (e.g., see
Hawes et al. 2019; Lynn et al. 2004). For each item, children were presented with a partially
completed visual–spatial pattern and asked to identify from six options the puzzle piece
that completes the pattern. The measure consisted of 36 items; children were awarded one
point for each correct response.
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2.2.3. Executive Function

Head–Toes–Knees–Shoulders Task: This measure was adapted from Ponitz et al. (2009). The
task requires children to engage in flexible attention, working memory, and inhibitory control
(McClelland and Cameron 2012), three core components of executive functioning (e.g., see
Miyake et al. 2000). Children listen to a command and are asked to perform the paired
“opposite” action; head and toes represent one pair, and knees and shoulders represent
the other pair. For example, if the command is “touch your head”, the correct response
would be to touch their toes, and if the command is “touch your shoulders”, the correct
response would be to touch their knees. The task consisted of two sections, and each section
consisted of 10 items. In the first section, children were only given one pairing (head–toes or
shoulders–knees), but in the second section, they received commands for both pairings. For
each item, children were given a score of 0, 1, or 2; 0 points if they performed the incorrect
action, 1 point if they motioned towards the incorrect action but self-corrected, and 2 points
if they performed the correct action. Children were given a total score out of 40.

Forward Path Span: This task was administered on an iPad and used to measure children’s
working memory. Children were presented with sets of nine randomly arranged green circles
and instructed to watch as the circles lit up one at a time (each for 0.6 s, with 0.5 s between
presentation). Children were then asked to tap the circles in the same order that they were
presented. Following a practice trial, children began with two trials at a sequence length of
two. If the child successfully recalled one or two sequences of a given length, they progressed
to the next sequence length (e.g., if the child correctly repeated a sequence length of two on
one or two trials, they were presented with two trials at a sequence length of three). The task
was discontinued when the child failed to get two sequences of any given length. Scores
were based on the total number of correct sequences recalled. For more information and to
access the measure, see https://hume.ca/ix/pathspan.html (accessed on 15 September 2016).

Reverse Path Span: The task is the same as the Forward Path Span but required children
to recall the sequences in reverse order in which they were presented. Scores were based on
the total number of correctly reversed sequences recalled. For more information and to access
the measure, see https://hume.ca/ix/pathspan.html (accessed on 15 September 2016).

2.2.4. Mathematics Achievement

Number Line Estimation: This task was administered on an iPad (to access the applica-
tion, see: https://hume.ca/ix/estimationline.html, accessed on 15 September 2016) and
used to measure children’s numerical estimation performance, a strong and reliable predic-
tor of broader mathematical competence (Schneider et al. 2018). Children were presented
with a horizontal line marked with ‘0’ at the far-left end of the line and either ‘10’ (for
children in Kindergarten) or ‘100’ (for children in Grades 1–3) at the far-right end of the
line. Children are then asked to indicate where a given number belongs on the number
line (e.g., where does the 7 go?). Children were first presented with a practice trial. For
kindergarten children, the practice trial involved the placement of ‘5’, and for children in
Grades 1–3, the practice trial involved the placement of ‘50’. The test trials for kindergarten
children included numbers 1–9 (with the exception of 5). For children in Grades 1–3, test
trials included the following target numbers adopted from Laski and Siegler (2007): 2, 3,
5, 8, 12, 17, 21, 26, 34, 39, 42, 46, 54, 58, 61, 67, 73, 78, 82, 89, 92, and 97. All trials were
randomly presented to children. The accuracy of each trial was recorded by the computer.
We then used this information and the following formula to calculate each child’s percent
absolute error (PAE) across all trials. A lower PAE indicates less error.

PAE =
Estimate − Estimated Quantity

Scale of Estimates
100

Mental Arithmetic and Strategy Use: Children were aurally presented with twelve single-
digit addition problems of increasing difficulty. The first four problems involved solutions
with sums of five or less, the next four problems involved solutions between 6 and 10, and
the last four problems involved solutions between 11 and 15. Items were counterbalanced

https://hume.ca/ix/pathspan.html
https://hume.ca/ix/pathspan.html
https://hume.ca/ix/estimationline.html
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so that half started with the smaller addend first and the other half started with the larger
addend first. Children were awarded 1 point for each correct response and given a total
score out of 12 (for further details, see Hawes et al. 2021).

Children’s strategy use was recorded for each question and based on observation and
self-report (“Can you tell me how you got that answer?”; see Siegler 1987). In cases where
children’s self-report contradicted their observed strategies, observed overt behaviors were
given preference. Consistent with previous literature (e.g., Siegler 1987), the following behav-
iors/strategies were used and reported on by children: guessing, counting up (also known
as count-all), counting on from the smaller addend, counting on from the larger addend,
composition/decomposition, and automatic retrieval. Counting up refers to counting both
addends separately prior to adding them together. Counting on refers to beginning with one
addend and counting on from there. Composition/decomposition refers to deconstructing
a problem into simpler parts (e.g., to solve 5 + 6, one might first add 5 + 5 and then add
1). Automatic retrieval refers to quick access to solutions committed to memory. Composi-
tion/decomposition strategies and automatic retrieval are considered more advanced than
the other strategies and associated with superior arithmetic performance (Casey et al. 2017).

Children’s strategy scores were calculated in two different ways depending on the
analysis used. In the mediation model, strategy scores were treated as a continuous variable.
That is, for each item children were assigned a score of 0–6, based on the sophistication of
each strategy (0 = I don’t know/no guess; 1 = Guess; 2 = Count up strategy, 3 = Count on
from smaller addend; 4 = Count on from larger addend; 5 = Composition/decomposition
strategy; 6 = Automatic retrieval). Using this approach, each child was awarded a total
arithmetic strategy score out of 72 with higher scores indicating more frequent use of more
sophisticated strategies. We also calculated the percentage of times a child used a given
strategy. For example, a child who relied on automatic retrieval for 50% of the items would
have an automatic retrieval score of 50. This scoring method was used for our analyses
examining the relations between each factor and the likelihood of using each strategy.

2.3. Analytical Approach

Structural equation model analyses were carried out using the lavaan package (Rosseel
2012), and correlations were carried out using the corrplot package (Wei and Simko 2021),
both of which are in R Studio (RStudio Team 2022). The recommended two-step approach
to structural equation modeling (SEM) was followed (Kline 2015). In the first step, confirma-
tory factor analysis was used to construct a measurement model; the measurement model
included latent constructs for numerical, executive function, and spatial skills. Following
the measurement model, we constructed a structural model to investigate how these la-
tent constructs were associated with each other and to each of the mathematics outcome
measures. Note that it was our original intention to also treat number line estimation
and arithmetic as a latent ‘mathematics’ variable. However, the fit statistics for a latent
mathematics variable were poor, suggesting the need to treat number line estimation and
arithmetic as separately manifested variables of mathematics performance.

Three goodness-of-fit statistics were used to determine model fit: (1) Root Mean Root
Mean Square Error of Approximation (RMSEA), (2) Comparative Fit Index (CFI), and (3)
Standardized Root Mean Residual (SRMR). Model fit was deemed ‘good’ or acceptable if it
met the following criteria: RMSEA values of <0.10, CFI values > 0.95, and SRMR values <
0.08 (Kline 2015).

Missing data were treated using listwise deletion, the default approach in the lavaan
package. This resulted in a total of 172 participants for the model where number line
estimation was the outcome variable and a total of 166 participants for the model where
arithmetic performance and strategy use were the outcome measures (see Table 2 for details
on missing data across measures).
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Table 2. Descriptive statistics for all measures.

N Mean SD Min Max Skew Kurtosis

Visual Spatial Reasoning (out of 20) 180 9.23 3.62 2.00 19.00 0.59 −0.11

2-D Mental Rotation (out of 16) 180 8.08 3.38 1.00 16.00 0.12 −0.76

Raven’s Matrices (out of 36) 180 18.13 6.20 4.00 33.00 −0.04 −0.45

Nonsymbolic Comparison (timed task) 180 12.98 7.49 −4.00 34.00 −0.16 −0.67

Symbolic Comparison (timed task) 180 17.73 11.91 −5.00 47.00 0.07 −0.85

Number Ordering (timed task) 178 6.33 5.54 −7.00 20.00 −0.02 −0.48

Head-Toes-Knees-Shoulders (out of 40) 179 27.24 11.19 0.00 40.00 −1.22 0.26

Forward Path Span 172 3.66 2.27 0.00 11.00 0.27 −0.48

Reverse Path Span 173 2.61 2.18 0.00 9.00 0.77 −0.30

Number Line Estimation (out of 1) 172 0.17 0.11 0.03 0.55 1.33 1.74

Mental Arithmetic Score (out of 12) 175 6.76 4.46 0.00 12.00 −0.39 −1.43

Mental Arithmetic Strategy (out of 6) 166 3.08 1.83 0.00 6.00 −0.23 −1.20

Age 180 6.21 1.38 4.08 9.17 0.19 −1.05

Grade 180 3.13 1.78 1.00 6.00 0.08 −1.50

3. Results
3.1. Preliminary Analyses

Descriptive statistics for each measure are shown in Table 2. Figure 1 shows the zero-
order correlations between all measures. Notably, all variables in the study were highly
and—with the exception of number line estimation—positively correlated. High correlations
between variables are consistently found within the literature (Hawes et al. 2019) and serve as
further justification for investigating whether these foundational skills are uniquely predictive
of mathematics achievement.

3.2. Structural Equation Models
3.2.1. Measurement Models

As noted earlier, we initially constructed a four-factor measurement model, which
included latent constructs for all three cognitive foundation skills as well as a fourth
latent construct of mathematics achievement that consisted of arithmetic and number line
estimation. However, model fit indices indicated poor model fit. As a result, we tested a
three-factor model including constructs for numerical, EF, and spatial skills and analyzed
number line estimation and arithmetic achievement as separate outcome measures.

3.2.2. Structural Models

Given the high correlations between variables, there was concern that a general intel-
ligence factor (g-factor) might better explain the data than the three-factor models tested
above. To rule out this possibility, we modelled the data using a single general intelligence
variable to predict children’s number line estimation and arithmetic performance. We then
compared these models to our three-factor models reported above. In each case, the three-
factor model provided a better fit than a single g-factor model. That is, for number line
estimation, the three-factor model was a better fit (AIC = 7643.43, BIC = 7721.08) than the
intelligence model (AIC = 7699.96, BIC = 7762.07). For arithmetic, the three-factor model
was a better fit (AIC = 8868.68, BIC = 8946.63) than the intelligence model (AIC = 8921.45,
BIC = 8983.81). Overall, these findings suggest that while numerical, EF, and spatial skills
are all highly related, they represent unique constructs and provide a better explanatory
model of children’s mathematics performance (number line estimation and arithmetic) than
a model of general intelligence.
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Figure 1. Correlations between spatial, numerical, EF, mathematics, age, and grade variables.

Separate structural models were created to examine how latent factors representative
of numerical, EF, and spatial skills related to (1) number line estimation, (2) arithmetic
performance, (3) arithmetic strategy use as mediator of cognitive skills and arithmetic
accuracy, and (4) the likelihood of using each arithmetic strategy. As shown in Table 3,
the model fit indices for each one of these analyses suggest good model fit on several key
metrics. The specific findings related to each model are reported next. Importantly, model
fits were poor (below the suggested criterion) when we included age; therefore, all models
exclude age. We address this limitation further in the discussion.
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Table 3. Model fit statistics for each structural model.

Metric of Model Fit Measurement
Model *

Number
Line

Estimation
Model

Arithmetic
Accuracy

Model

Arithmetic
Strategy

Mediation
Model

Likelihood
Arithmetic

Strategy
Model

Criterion

Robust Chi-Squared 0.010 (df = 24) 0.000 (df = 45) 0.032 (df = 30) 0.025 (df = 36) 0.000 p > 0.05
Chi-Squared with Satorra-Bentler

scaling correction factor -- 1.052 1.055 0.999 0.885

Robust Root Mean Square of Error
Approximation (RMSEA) 0.069 0.076 0.058 0.057 0.053 <0.10

Robust Standardized Root Mean Square 0.030 0.033 0.029 0.029 0.034 <0.08
Robust Comparative Fit Index (CFI) 0.981 0.974 0.986 0.987 0.979 >=0.95

Note. Criterion values follow the guidelines set out by Kline (2015). * Measurement model statistics are not robust.

3.2.3. Number Line Estimation

Figure 2 shows the relations between each latent variable—numerical, EF, and spatial—
and number line estimation. As shown in Figure 2, only executive function skills were
significantly related to number line estimation, controlling for children’s numerical and
spatial skills. This finding is contrary to previous work which has found that spatial skills
are predictive of number line estimation (Gunderson et al. 2012; LeFevre et al. 2013).
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3.2.4. Arithmetic Accuracy

Figure 3 shows the relations between each latent variable—numerical, EF, and spatial—
and arithmetic accuracy. As shown in Figure 3, only spatial skills were significantly related
to arithmetic accuracy, while controlling for children’s numerical and EF skills. Numerical
skills were only marginally related to arithmetic accuracy (p = 0.055), when controlling for
spatial and EF skills. These findings align with Hawes et al. (2019), who found that spatial
skills were the strongest predictor of both numeration and geometry.
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3.2.5. Mediation Model—Arithmetic Strategy Use

Figure 4 shows the results of a mediation model where children’s strategy is tested as a
mediator of the relations between each cognitive factor and arithmetic accuracy. This model
reveals that strategy is predicted only by spatial skills and strategy is the only predictor of
arithmetic performance. In other words, strategy fully mediates the relationship between
spatial skills and arithmetic performance. This is in line with existing research which
suggests that spatial skills are predictive of strategy use (Casey et al. 2017; Laski et al. 2013).
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3.2.6. Relations between Cognitive Factors and Strategy Use

In order to further probe how arithmetic strategy was related to foundational skills and
arithmetic performance, we constructed a post-hoc structural equation model where we
looked at how latent factors for foundational skills were predictive of different strategy types.
Here, strategy types are operationalized as the percentage of times a child used the given
strategy (e.g., a child who used decomposition 33% of the time would have a decomposition
score of 33). None of the foundational skills were predictive of guessing, count up, or
count on (lower addend) strategies. Numerical skills were marginally predictive of count
on (higher addend; β = 0.537, p = 0.050). Spatial skills were predictive of decomposition
(β = 0.438, p = 0.016) and retrieval (β = 0.619, p < 0.001) strategies. These results are in line
with our overall strategy model as well as previous findings that spatial skills are predictive
of decomposition and retrieval specifically (Casey et al. 2017; Laski et al. 2013).

4. Discussion

This study examined how numerical, EF, and spatial skills related to two mathematics
achievement measures: number line estimation and arithmetic performance. In line with
previous work by Hawes et al. (2019), we found that all three skills were highly related, yet
separable, latent constructs. Moreover, the three-factor model (i.e., modelling numerical, EF,
and spatial skills as separate latent variables) fit the data better than a general intelligence
(g-factor) model. While EF skills were the only unique predictor of number line perfor-
mance, spatial skills were the only unique predictor of arithmetic (addition) performance.
Additionally, spatial skills were related to the use of more advanced addition strategies
(e.g., composition/decomposition and retrieval), which in turn were related to children’s
overall arithmetic performance. In other words, children’s strategy use fully mediated the
relation between spatial skills and arithmetic performance. Whereas numerical skills were
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marginally associated with children’s likelihood of using the min strategy (counting on
from the larger addend; e.g., for the problem 3 + 5, a child would say, “5 . . . 6, 7, 8”), spatial
skills were uniquely related to the use of composition/decomposition strategies (e.g., for
5 + 4, a child might say “I know 4 + 4 is 8, so 1 more is 9”) and automatic retrieval (e.g., just
knowing that 4 + 4 = 8).

4.1. Number Line Estimation

Children’s number line performance was uniquely predicted by EF skills, over and
above numerical and spatial skills. This is a surprising finding, as prior research has sug-
gested that both numerical and spatial skills play a fundamental role in number line esti-
mation (Gunderson et al. 2012; LeFevre et al. 2013). In comparison, the role of EF skills has
received less attention. One explanation for the current finding is that EF skills, such as
inhibitory control and self-monitoring, may play an important role in assessing the accu-
racy of one’s initial estimate. Said differently, while numerical and spatial skills may help
children make a quick and approximate magnitude estimate, EF skills may further assist in
making fine-tuned adjustments to one’s initial estimate. For example, when asked to locate
67 on a 0–100 number line, a child may initially reason that “67 is somewhere between 50
and 100”, but, upon further reflection, more precisely reason that “67 is located just less
than 70”, all the while, using proportional/spatial reasoning to locate the corresponding
numerical positions on the line/scale. In this way, higher EF skills may be related to a
higher propensity to integrate numerical and spatial strategies, override or fine-tune initial
estimates and, ultimately, lead to more accurate performance. Moving forward, process-
based accounts of number line performance are needed, taking into account the precise
ways in which children’s numerical, EF, and spatial skills influence strategy choice and the
specific decision-making processes involved with number line estimation (e.g., see Dotan
and Dehaene 2013; Dotan et al. 2019).

4.2. Arithmetic Performance and Strategy Use

After taking into account children’s numerical and EF skills, only spatial skills ex-
plained unique variance in arithmetic (addition) accuracy. A primary purpose of this study
was to test the extent to which the findings of Hawes et al. (2019) extended to different
measures of mathematics. While Hawes et al. (2019) found that spatial and, to a lesser
extent, numerical skills, were unique predictors of mathematics, there was concern that
these findings may have been due to the way in which mathematics was assessed; that is,
through geometry and numeration measures that featured novel/unfamiliar problems and
presented through the use of visual–spatial representations (e.g., reasoning about graphs,
shapes, arrays, etc.), with many items requiring explicit spatial reasoning (e.g., identifying
a figure given the front, side, and top views). The present finding suggests that spatial
skills also play an important role in mathematics tasks that are more familiar to children
and that are not overtly spatial (at least on the surface).

This raises the question of how spatial skills might support children’s arithmetical
reasoning. To gain insights into this question, we measured children’s strategy use. Perhaps
unsurprisingly, given the findings just reported, we found that strategy use mediated the
relations between spatial skills and overall addition accuracy. That is, higher spatial skills
were related to the use of more sophisticated addition strategies, which in turn, was related
to higher overall accuracy. A follow-up analysis revealed that spatial skills were unrelated
to lower-level addition strategies (e.g., counting all) and uniquely related to higher-level
strategies of composition/decomposition and retrieval strategies. This finding is consistent
with previous research showing that children’s spatial skills share both concurrent and
longitudinal relations with the use and development of composition/decomposition and
retrieval strategies (Casey et al. 2017; Laski et al. 2013).

As previously theorized, it is possible that the mental operations that underlie the
composition/decomposition of shapes (as measured in the current study) may also serve
the composition/decomposition of number (see Casey and Fell 2018; Mix 2019). Moreover,
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more advanced addition strategy use may be related to spatial visualization skills and
the important role they play in one’s ability to recall, mentally organize, visualize, and
manipulate the problem at hand. These possibilities most closely align with the spatial
modelling account (Hawes and Ansari 2020). Critically, our findings also provide counter
evidence to the working memory account, which postulates that space-mathematics relations
may best explained by children’s working memory, EF, or general intelligence skills. In
the present study, neither EF skills, including measures of working memory, or a g-factor
model, were able to explain the space-mathematics relation as well as the relations between
children’s spatial visualization skills and addition accuracy and strategy use. Moving
forward, more targeted efforts are needed to further reveal the mechanisms linking spatial
visualization skills and arithmetic performance.

Although children’s numerical skills were not related to addition accuracy, they were
related to the use of the counting on from the larger addend strategy (albeit with a p value
of 0.05). This finding supports the importance of being able to quickly and accurately access
the numerical magnitudes/cardinality of each addend (e.g., 5 + 3) in order to engage in the
counting-on strategy. So, while this finding is perhaps unsurprising, it does offer further
evidence that children’s numerical, EF, and spatial skills provide both shared and unique
pathways to mathematics, and, moreover, that these relations vary depending on the specific
mathematics at hand.

4.3. Limitations and Future Directions

One major limitation of the current study was that we were unable to account for
age and grade in our current models. We constructed models accounting for age and
grade (separately) at the level of cognitive foundations and at the level of mathematics
achievement, and we created multi-group models to account for age; however, many of these
models did not converge and those that did had very poor fits (i.e., outside the suggested
criterion). As such, we did not account for these important developmental variables within
our models. We have some confidence in our models given that previous work investigating
EF, numerical, and spatial skill using a largely overlapping sample (with greater statistical
power) found that age did not fully account for the relations observed (Hawes et al. 2019).
That said, future work that addresses differences in foundational skills and mathematics
achievement across age or grade is certainly required in order to fully understand the
relations among these domains.

Notably, this work is also cross-sectional in nature, and therefore we cannot draw
any conclusions regarding the directionality of mediation analyses. Investigating how
cognitive foundational skills such as numerical, EF, and spatial skills longitudinally relate to
mathematics achievement is an important future direction (see Verdine et al. 2017 for some
progress in this regard). Additionally, it is critical to consider that all variables measured
in the study were very highly correlated. Therefore, while we are confident that these
cognitive foundational skills are robustly predictive of mathematics achievement, further
replication remains necessary in order confirm the specific relations between foundational
skills and specific measures of mathematics achievement.

Finally, we wish to point out that the current study used eleven instruments to assess
numerical, spatial, EF, and mathematical skills. We consider this as both a strength and
limitation of our work. On one hand, the creation of latent factors is statistically sound
and the use of multiple measures to construct those latent factors is required. On the other
hand, this approach is not feasible for use by practitioners. It is essential that future work
investigates and considers which of these, if any, are the most robust predictors of the various
skills and how they could be used to inform mathematics teaching and intervention efforts.

5. Conclusions

Our results indicate close relations between children’s numerical, EF, spatial, and
mathematics skills. These results are consistent with a cognitive foundations model, in
which the relations between each cognitive skill and mathematics performance are likely
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to depend on the mathematics task or learning process under consideration. We found
especially strong relations between EF skills and number line estimation and between
spatial skills and arithmetic performance and strategy use. These findings are meaningful
insofar as both number line estimation and arithmetic have been identified as robust
predictors of later mathematics achievement (Schneider et al. 2018; Lin and Powell 2022).
Moving forward, it will be important to continue strengthening our understanding of the
dynamic interplay of these foundational cognitive skills and their relations with various
branches of mathematics. Such efforts have the potential to inform mathematics assessment
and instruction by providing key insights into the cognitive bases of individual differences
in children’s mathematics thinking and learning.
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