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Prior research has revealed robust and consistent relations between spatial and mathematical skills. Yet,
establishing a causal relation has been met with mixed effects. To better understand whether, to what
extent, and under what conditions mathematics performance can be improved through spatial training,
we conducted a systematic meta-analysis of the extant literature. Our analysis included 29 studies that
used controlled pre-post study designs to test the effects of spatial training on mathematics (N = 3,765;
k = 89). The average effect size (Hedges’s g) of training relative to control conditions was .28
(SE = .07). Critically, there was also evidence that spatial training improved individuals’ spatial thinking
(g = .49, SE = .09). Follow-up analyses revealed that age, use of concrete manipulatives, and type of
transfer (“near” vs. “far”) moderated the effects of spatial training on mathematics. As the age of partici-
pants increased from 3 to 20 years, the effects of spatial training also increased in size. Spatial training
paradigms that used concrete materials (e.g., manipulatives) were more effective than those that did not
(e.g., computerized training). Larger transfer effects were observed for mathematics outcomes more
closely aligned to the spatial training delivered compared to outcomes more distally related. None of the
other variables examined (training dosage, spatial gains, posttest timing, type of control group, experi-
mental design, publication status) moderated the effects. Additionally, analyses of publication bias and
selective outcome reporting were nonsignificant. Overall, our results support prior research and theoreti-
cal claims that spatial training is an effective means for enhancing mathematical understanding and per-
formance. However, our meta-analysis also highlights a poor understanding of the mechanisms that
support transfer. To fully realize the potential benefits of spatial training on mathematics achievement,
more theoretically guided studies are needed.
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Broadly defined as the ability to generate, manipulate, and reason
about spatial relations between and within objects, spatial thinking is
widely regarded as a key contributor to mathematics performance.
Indeed, over a century of research has revealed robust and consistent
relations between spatial and mathematical abilities (Galton, 1880;
Smith, 1964; Xie et al., 2020; see reviews by Hawes & Ansari,
2020; Lourenco et al., 2018; Mix & Cheng, 2012). Moreover, evi-
dence of this relation is found in people of all ages, from infancy
through adulthood, and across a diverse range of populations.

This evidence, coupled with theoretical accounts of the space-
mathematics link, has led to speculation that spatial training may
be an effective means of improving mathematical abilities.
Researchers have claimed that “spatial instruction can be expected
to have a ‘two-for-one’ effect that yields benefits in mathematics
and the spatial domain” (Verdine et al., 2014; p. 12). Others have
suggested that spatial training could pay substantial dividends in
increasing participation and success in not only mathematics, but
the other STEM (Science, Technology, Engineering, and Mathe-
matics) disciplines as well (Newcombe, 2010; Uttal et al., 2013).
Given the central role that mathematics plays in academic achieve-
ment (Duncan et al., 2007), as well as other important outcomes,
such as socio-economic status (SES), health, and personal well-
being (Parsons & Bynner, 2005; Ritchie & Bates, 2013), evi-
dence-based approaches to improving mathematics are increas-
ingly in demand. Thus, establishing whether spatial training
transfers to mathematics is of both theoretical and practical
importance.

Currently, such a prediction rests almost entirely on theoretical
claims and correlational evidence (Hawes & Ansari, 2020). Only
recently have researchers begun to test whether spatial training
generalizes beyond the spatial domain to support improvements in
other domains, such as mathematics. Our aim is to provide a
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systematic meta-analysis of this emerging literature, to determine
whether, to what extent, and under what conditions mathematics
performance can be improved through spatial training.

Why Spatial Training Should Work

One might question the potential of spatial training to show
transfer to mathematics, given that training in other domain-
general skills, such as working memory has not shown such
transfer (e.g., see Melby-Lervåg et al., 2016; Sala & Gobet,
2019; 2020). Certainly, simply demonstrating that performance
in two domains is correlated does not explain why they are con-
nected or guarantee that learning in one will transfer to the other
(Hawes & Ansari, 2020; Mix & Cheng, 2012). However, spatial
training may have greater promise than other domain-general
skills training, given growing evidence that the relations
between spatial thought and mathematical thought are based on
shared cognitive processes.
First, there is substantial evidence that spatial skills are mallea-

ble. A meta-analysis of 206 training studies across a 25-year pe-
riod (1984–2009) demonstrated that spatial thinking can be
improved in people of all ages and through a variety of training
approaches (i.e., video games, course training, spatial task train-
ing) (Uttal et al., 2013). The average effect size (Hedges’s g) for
training relative to control in these studies was approximately one
half a standard deviation (.47). To put this finding into context, the
authors suggested that an improvement of this magnitude would
approximately double the number of U.S. citizens with the spatial
skills associated with receiving a degree in engineering.
Importantly, studies also indicate that spatial processes are acti-

vated automatically when people solve mathematics problems (see
Hawes & Ansari, 2020, for a review). For example, results from a
recent fMRI meta-analysis indicated that spatial (mental rotation)
skills and numerical skills activate highly overlapping regions of
the intraparietal cortex, suggesting common neural mechanisms
(Hawes, Sokolowski, et al., 2019; see also Hubbard et al., 2005).
There is also strong evidence that people represent numerical mag-
nitudes in a spatial format (Dehaene et al., 1993; Fias & Fischer
2005; Toomarian & Hubbard, 2018), and rely on spatial process-
ing to decode mathematical symbols, for example, algebra equa-
tions (Landy & Goldstone, 2010). Moreover, multiple factor
analyses have revealed remarkably strong, sometimes even indis-
tinguishable, relations between spatial and mathematical task per-
formance across development (Frick, 2019; Mix et al., 2016;
2017). Strong evidence of shared processing distinguishes the rela-
tion between mathematics and space from relations between math-
ematics and other domain-general processes (e.g., see Hawes &
Ansari, 2020).
Another reason to predict strong transfer from spatial training to

mathematics is that people strategically recruit spatial skills and
representations when solving mathematics problems (Casey &
Fell, 2018; Lowrie & Kay, 2001; Mix, 2019). For example, spatial
visualization can be used as a “mental blackboard” on which to
model, simulate, and manipulate mathematical relations (e.g.,
Seron et al., 1992), or to ground the meaning of mathematical
symbols (Mix, 2019). People also use spatial tools, such as number
lines, base-10 blocks, or diagrams as scaffolding while problem
solving (Hegarty & Kozhevnikov, 1999; Mix, 2010)—an approach
that is widely used in mathematics education (Carbonneau et al.,

2013; Sowell, 1989). The widespread use of spatial strategies in
mathematics indicates a natural connection that may be enhanced
through training. In contrast, there are fewer examples of similar
strategy use for other domain-general skills for which training has
failed to transfer.

To summarize, there are a variety of reasons why spatial train-
ing may be an effective means of improving mathematics perform-
ance. These reasons include shared domain-general processes
(e.g., mental manipulation of objects), as well as shared domain-
specific processes (e.g., use and knowledge of spatial transforma-
tions to solve geometry and measurement problems). Spatial skills
have also been linked to more flexible and efficient mathematics
problem-solving strategies (Casey et al., 2017; Hegarty & Kozhev-
nikov, 1999; Laski et al., 2013; Lowrie & Kay, 2001). Thus, spa-
tial training may have the added benefit of encouraging more
effective spatially based problem-solving strategies and solutions
(e.g., see Casey & Fell, 2018). A similar argument is that spatial
instruction provides learners with additional entry points into
mathematics—new ways of seeing, understanding, and appreciat-
ing mathematics that without explicit spatial instruction will con-
tinue to go underrecognized, undervalued, and underdeveloped
(Moss et al., 2016; National Research Council, 2006). Together,
these reasons not only indicate why spatial training may transfer to
mathematics, but further suggest the added value of spatial train-
ing that extends beyond standard mathematics instruction alone.

What Spatial Skills to Train?

To date, investigations of space-math relations have focused
almost exclusively on spatial visualization (i.e., small-scale rea-
soning that involves dynamic representations of spatial relations,
e.g., Hegarty et al., 2006). Whether large-scale spatial skills, such
as navigation, also relate to mathematics remains an open ques-
tion. Indeed, nearly all studies included in the current analysis
focused their training on the development of spatial visualization
skills (e.g., mental rotation).

This focus on spatial visualization may be due to the extensive
body of research demonstrating moderate to strong correlations
between spatial visualization skills and mathematics (Delgado &
Prieto, 2004; Hawes, Moss, et al., 2019; Hegarty & Kozhevnikov,
1999; Kyttälä & Lehto, 2008; Tam et al., 2019; Tolar et al., 2009;
Wei et al., 2012), as well as the current theoretical accounts
described above, which offer cogent explanations for this specific
relation (e.g., Seron et al., 1992). Taken together, it makes sense
that spatial visualization would be seen as the most promising can-
didate for spatial training studies. However, this is not to say other
spatial skills might not also facilitate mathematics performance.
Factor analyses have indicated that spatial skills form a single fac-
tor in elementary aged children (Mix et al., 2016, 2017)—a factor
that is highly correlated with mathematics—which implies that
training in any of these skills should be equally effective at
improving mathematics performance. There is also growing evi-
dence that spatial skills besides spatial visualization, such as spa-
tial scaling, figure copying, and proportional reasoning, represent
important spatial processes for the learning, doing, and under-
standing of mathematics (Frick, 2019; Gilligan et al., 2019; Mix et
al., 2020; Möhring et al., 2016). Presently, however, the dominant
approach to testing whether spatial training generalizes to
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mathematics involves the training of spatial visualization skills.
Our results should be interpreted with this limitation in mind.

The Evidence: Transfer From Spatial Training to
Mathematics

As noted above, direct tests of transfer from spatial training to
mathematics are relatively recent and limited. Of the published
studies in this area, 95% have appeared in or since 2014. Admit-
tedly, the literature that has amassed so far is mixed, but there is
emerging evidence to support the promise of spatial training.
Some studies published on this topic have reported significant

positive transfer (e.g., Cheng & Mix, 2014; Hawes et al., 2017;
Lowrie et al., 2017; Mix et al., 2020). For example, Cheng and
Mix (2014) gave 7-year-olds an age-appropriate calculation test,
and then, in a later session, had them complete a series of spatial
transformation exercises with feedback. Immediately following
completion of the spatial exercises, children were given a second
calculation test. There was a significant increase in children’s
calculation scores from pre- to posttest for the spatial training
group, but no improvement for a control group that had practiced
crossword puzzles instead. Similar findings have been reported
for older children (e.g., 12-year-olds, Lowrie et al., 2017; Mix
et al., 2020) and following longer periods of training (e.g., 32
weeks, Hawes et al., 2017). Others have reported positive effects
on mathematics scores in children following mixed training that
included, but was not limited to, spatial skills such as mental
rotation (Nelwan & Kroesbergen, 2016). Studies have shown
similar improvement among undergraduates taking science
and engineering course work following spatial visualization
training (Miller & Halpern, 2013; Sorby, 2009; Sorby et al.,
2013). Taken together, these studies provide intriguing prelimi-
nary evidence that spatial training can improve student outcomes
in mathematics.
However, not all attempts to obtain transfer from spatial training

to mathematics have been successful. In some studies, spatial
training led to improvement in spatial skill, but there was no trans-
fer to numeracy or mathematics (Cornu et al., 2019; Hawes et al.,
2015; Rodán et al., 2019; Xu & LeFevre, 2016). For example,
Hawes et al. (2015) completed a randomized controlled study in
which 6- to 8-year-olds received six weeks of training in either
mental rotation or literacy. Children who had practiced mental
rotation went on to show significant gains on a test of spatial trans-
fer that included spatial transformation and spatial puzzles, but
they showed no improvement on tests of calculation (either sym-
bolic or nonsymbolic). Children in the literacy group had no
improvements in spatial or mathematics performance at posttest.
Thus, spatial training was effective at improving general spatial
skill but did not transfer to mathematics.
It is important to know whether the positive effects of spatial

training that have been reported are reliable and whether they
reflect a valid causal mechanism for improving mathematics. To
address this question, we carried out an extensive literature search
to identify studies that tested whether spatial training improves
mathematics. We then used meta-analysis techniques to estimate
the size of these effects when the entire body of evidence is con-
sidered. We also tested a range of potential moderator variables, to
determine whether spatial training improves mathematics skills

but only under certain conditions. Our rationale for selecting spe-
cific moderator variables follows.

Potential Moderators of Spatial Training Effects

We identified and tested nine moderator variables. Eight of
these were methodological dimensions that may have contributed
to the variability in transfer between studies, each of which is
briefly described below. As one of several efforts to address publi-
cation bias, we also tested whether results differed for published
versus unpublished studies. Whether or not there is a significant
overall effect of spatial training, these differences in study design,
features of spatial training, and publication status might explain
why transfer is reported in some studies and not others.

Participant Age

Spatial processing may be more tightly tied to mathematics at
different developmental stages and if so, these age-linked effects
could moderate the effectiveness of spatial training. For exam-
ple, it could be argued that spatial processes are more tightly tied
to mathematics in early childhood because young children are
preoccupied with grounding symbols and all mathematics con-
tent is relatively novel to them. On some accounts, spatial proc-
esses may be engaged more frequently when learners are
grounding symbols or interpreting novel problems (Mix et al.,
2016; Uttal & Cohen, 2012). Alternatively, spatial processes
might become more tightly tied to mathematics as children get
older and become more skilled in recruiting spatial processes
strategically. Although direct comparisons among elementary
age groups do not suggest a change in the strength of the correla-
tion between spatial skill and mathematics (e.g., Mix et al.,
2016), such a difference might emerge if a wider range of age
groups were considered. For example, we know that two of the
studies for which spatial training effects were not found (Cornu
et al., 2019; Xu & LeFevre, 2016) focused on 3- to 5-year-olds
—a younger age group than had been tested in studies showing
positive training effects (i.e., 7- to-12-year-olds).

Training Dosage

The number and length of spatial training sessions have varied
across studies in this literature. Although it stands to reason that
more spatial training would lead to greater effects, the evidence
does not seem to indicate a linear relation. For example, one study
reported significant transfer following only a single training ses-
sion lasting 40 minutes (Cheng & Mix, 2014). Similar effects
were obtained after 6 weeks of training (Mix et al., 2020). Thus,
despite considerable differences in training dosage, comparable
levels of transfer to mathematics occurred. One explanation for
these nonlinearities may be threshold effects, in which spatial
training improves mathematics up to a point, after which further
training has less impact (Freer, 2017). However, it is important to
first establish whether the patterns related to dosage are linear
when the entire body of evidence is considered. The present meta-
analysis provides such an opportunity and may either confirm that
the relation is nonlinear or reveal stable patterns that might other-
wise have been missed.
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Spatial Gains

Studies vary in how effective the spatial training delivered is in
improving spatial outcomes, that is, the size of spatial gains. One
might expect that greater spatial gains following training may be
correlated with greater transfer to mathematics outcomes.

Transfer DistanceWithin Mathematics (Near Versus
Far Math Transfer)

Spatial training may have greater effects for mathematics
topics that have direct overlap with the spatial training delivered.
For example, it could be argued that spatial training using ori-
gami has direct overlap with the skills tested in geometry and
measurement tasks because both the spatial training and the
mathematics tasks require interpreting and manipulating forms.
Weak support for this notion comes from cross-domain factor
loadings which seemed to indicate that certain mathematics skills
were more highly related to spatial skill than others (Mix et al.,
2016; 2017). However, the existing literature provides several
reasons to question predictions based on mathematical specific-
ity. First, there is little evidence, to date, to suggest that spatial
skills are differentially related to different aspects of mathemat-
ics (e.g., Mix & Cheng, 2012; Xie et al., 2020). Second, spatial
skills are strongly correlated with basic numerical reasoning
tasks that—on the surface—do not appear to share conceptual
overlap with spatial skills (e.g., comparing the larger of two
numbers) (Verdine et al., 2014; Viarouge et al., 2014). Finally,
as noted above, the spatial and mathematical domains appear to
be unitary but highly correlated (Mix et al., 2016) and the evi-
dence that certain kinds of mathematics are particularly sensitive
to certain kinds of spatial training is weak (Mix et al., 2020).
That said, attempts to classify mathematical strands (e.g., numer-
ation, algebra, data science, etc.) according to spatial processing
demands has scarcely been examined, and it remains to be dem-
onstrated whether the space-math relation depends on the spe-
cific spatial paradigm delivered and the characteristics of the
mathematics outcomes under investigation.

Training Delivery (Concrete Versus Nonconcrete)

Studies vary in whether spatial training is delivered with
objects or through an electronic application. Mix et al. (2020)
used an object-based delivery in which children first chose two
of four pictures that matched a standard after rotation, and then
used three-dimensional block constructions, that they could
physically turn, to check their choices. Other studies have pro-
grammed similar spatial exercises into software applications that
children can use on an iPad or laptop computer (e.g., Hawes et
al., 2015; Rodán et al., 2019). Given that spatial processes sup-
port and constrain movement through physical space and the
manipulation of objects, one might expect spatial training with
physical objects to be more effective. However, some studies
have shown no difference between implicit video-based training
and training with explicit practice and feedback (Gilligan et al.,
2019), suggesting that training delivery may not be a meaningful
moderator. The present meta-analysis compares studies that use
concrete materials (physical manipulatives) in the delivery of
spatial training to those that do not, and thus will provide a

broader base from which to assess the potential effects of train-
ing delivery.

Posttest Timing

In some studies, the mathematics posttest was given immedi-
ately following training, while in others, it was given several
days, or sometimes more than a week, after training. It is impor-
tant to examine these differences because the timing of the math-
ematics posttest could affect the nature of the underlying spatial
changes being measured. Posttests administered after longer
delays are more likely to reflect stable changes in spatial (and
mathematics) skill, whereas posttests administered immediately
after training may reflect priming effects rather than stable skill
changes.

Control Group Type (Business-as-Usual Versus Active)

Part of our inclusionary criteria was that studies had to include a
control group. Studies that used within-group pre-post studies
designs were excluded from the present study. Control groups dif-
fered according to whether they included a business-as-usual
(BAU) control group versus an active control group. For our analy-
ses, we compared the outcomes of studies that delivered BAU
mathematics curriculum to children in the control group against the
outcomes of studies that provided direct instruction in either mathe-
matics or an unrelated skill to children in the control group. One
could argue that active controls provide a more rigorous test of the
effects of spatial training given that all children (experimental and
control) receive some form of intervention. Indeed, prior meta-anal-
yses have revealed that the type of control group can greatly moder-
ate, even eliminate, the effects and conclusions one can make about
the effectiveness of training (e.g., see Green et al., 2019; Melby-
Lervåg et al., 2016; Uttal et al., 2013). Thus, it is important to con-
firm whether there are significant effects of spatial training for both
control types. Note, in the present study, there were not enough
studies to compare the effects of training against different types of
active control groups (e.g., those that received mathematics instruc-
tion vs. an unrelated skill, such as literacy training). Thus, our com-
parison was between BAU and active controls only.

Experimental Design (RCT Versus Quasi-Experimental)

Some of the studies in this corpus were randomized controlled
trials (RCTs) with a randomly assigned control group. Others took
advantage of existing classroom groupings and delivered the spa-
tial training in a nonrandom, quasi-experimental design. Because
RCTs provide a more stringent test, one might expect the effects
of spatial training to be greater in, and perhaps even exclusive to,
the quasi-experimental designs. To know whether spatial training
has robust and consistent effects, it is important to determine
whether significant positive effects have been observed in studies
of both designs.

Publication Status

As one of several safeguards against publication bias, we
included a moderator analysis for published versus unpublished
studies. This comparison could indicate whether any significant
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effects in the overall dataset are attributable to published studies,
in whole or in part, as an index of possible file drawer effects.

Other Potential Moderators

Several other factors could plausibly influence the effectiveness
of spatial training and the degree to which spatial training transfers
to mathematics, but we were unable to test them given the studies
that met our inclusion criteria. Specifically, we were unable to
explore the effects of different types of spatial skill training because
the majority of studies delivered some form of spatial visualization
training, and many spatial skills were not represented at all (e.g.,
large-scale spatial skills such as navigation). In the end, there was
not enough variability in the types of spatial skills trained to include
it as a moderator. Similarly, although motivational factors may also
influence the efficacy of spatial training, only one study measured
motivational factors. Finally, it was not possible to investigate the
durability of gains over time because only one study in our meta-
analysis included a follow-up test after posttest.

Current Study

This study addresses three overarching research questions. First,
is there a causal effect of spatial training on spatial skills? Given
the assumption that transfer from the spatial to mathematical do-
main is based on the malleability of spatial thinking, it makes
sense to first establish whether the independent variable of interest
(spatial skill) is indeed mutable. Moreover, many spatial training
studies have been conducted since the Uttal et al. (2013) analysis.
The findings from the present study will provide additional
insights into the malleability of spatial thinking. Second, our main
question asks whether there is a causal effect of spatial training on
mathematics. We will determine this by investigating whether spa-
tial training leads to transfer of gains to mathematics outcomes
when the entire literature is considered. Based on Pearl’s (2009)
Interventionalist Theory of Causation, if an effect of spatial train-
ing on mathematics is obtained, (i.e., a manipulation in one vari-
able has led to change in another), then a causal relationship can
be inferred. Third, how might specific conditions and features of
spatial training influence the extent to which spatial training trans-
fers to mathematics? We address this question by examining a
range of candidate moderators.

Method

The meta-analysis search was conducted in line with the Pre-
ferred Reporting Items for Systematic Reviews and Meta-Analy-
ses (PRISMA) guidelines (www.prisma-statement.org), (Moher et
al., 2009).

Data Collection and Inclusion Criteria

As outlined in Figure 1, the search strategy included several stages.
Suitable articles for this meta-analysis were identified using electronic
searches of the databases PUBMED, PsycINFO, ERIC, ProQuest Dis-
sertations & Theses, and Google Scholar (November 2019). For each
database, we used combinations of the search terms “training,” “prac-
tice,” “experience” and “instruction” with the search terms “spatial,”
“mental rotation,” “scaling,” “visualisation (visualization)” and

“visuospatial skills,” and the search terms “mathematics,” “maths,”
“mathematical,” “numeracy,” “arithmetic,” “calculation” and “ge-
ometry.” This search yielded 190 results. To avoid publication bias
(i.e., the file-drawer effect), we took several additional steps to ac-
quire unpublished data. We searched the tables of contents for
recent conference proceedings for any relevant studies. We sent out
a call for data that explicitly asked for unpublished work (see Ap-
pendix A or visit our Open Science Framework (OSF) page: https://
osf.io/8yn7m/). The call was distributed through several interna-
tional mailing lists, including the Spatial Intelligence Learning Cen-
ter (SILC; Sep 24th 2019), DEV-Europe (Sep 23rd 2019), DP-Net
(October 12th 2019) and the Cognitive Development Society (Cog-
devsoc; Oct 13th 2019), as well as the professional networks of the
research team. These steps led to the discovery of 28 additional
studies.

A three-stage process was used to ensure that all of the studies
identified in our search were suitable for inclusion in the meta-
analysis (see Table 1). Each stage was completed independently
by the first and second authors and then the results were compared
to determine interrater agreement.

Stage I

For each identified article, the title was reviewed, and articles
were removed if they (i) used nonhuman subjects, (ii) were pub-
lished in a language other than English, or (iii) did not include
behavioral evidence (e.g., used cellular or physiology-based out-
comes instead, or were solely review articles). Complete interrater
agreement was achieved on all but two studies (99.98% total
agreement), and these were both ultimately included following dis-
cussion. In total, 111 articles progressed to Stage II.

Stage II

The reviewers read the abstracts of each article and determined
whether the studies included (a) a pretest-training-posttest design,
(b) at least one mathematics outcome measure, (c) at least one spa-
tial training group and (d) a control group. Interrater reliability
was 100% and 47 studies progressed to Stage III.

Stage III

Each reviewer read each article in full to confirm its suitability and
19 articles were excluded (reasons for this are given in Figure 1).
The interrater reliability at Stage III was 100%. Twenty-eight studies
were included in the final meta-analysis. This number increased to 29
studies when we noticed that one of the studies included two distinct
age groups (1st and 6th grade students), (Mix et al., 2020), leading us
to analyze the two age groups as separate studies (See Table 2). We
contacted authors directly if they did not provide enough information
in their papers (e.g., pre- and posttraining data), to calculate effect
sizes. All authors who were contacted provided this information on
request. As a final attempt to locate any missing studies, we also
searched the reference lists of all suitable articles identified through
the literature search. No additional studies were identified. Interrater
reliability was 100%.

Moderator Variables

The operational definitions for our eight moderator variables are
presented below. Twenty percent of studies were double coded by
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two reviewers (i.e., the first and second authors) and their interrater
reliability was 98%. Any discrepancies were resolved through dis-
cussion and consulting the original papers. The remaining studies
were divided between the two reviewers and coded separately.
When information about a particular moderator was missing, we
requested the information from the authors directly. For the moder-
ator “Control Group,” two studies compared the same experimental
group to two different control groups. In both cases, only one

comparison was used in the meta-analysis. In one case, we chose
the control group that most closely resembled the experimental
group. Specifically, the experimental group included participants
with math learning difficulties (MLD), so we selected the control
group of children with MLD and excluded the control group of chil-
dren who were typically developing (Krisztián et al., 2015). In the
second case, both control groups had similar demographic features,
so we took the most conservative approach and selected the control

Figure 1
PRISMA Diagram Outlining the Search Strategy and Reasons for Excluded Studies

Note. See the online article for the color version of this figure.
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group that generated the smaller effect size when compared to the
experimental group (Freer, 2016). Lastly, it should be noted that
one of the selected studies included two posttests (i.e., an immediate
posttest and a follow-up posttest; Honour, 2020). However, as this
was the only study to include a follow-up posttest, these data were
not included in the meta-analysis.

Participant Age

Participant age was coded continuously based on the mean age
of the participants measured in months.

Training Dosage

Training dosage was coded continuously based on the overall
amount (duration) of spatial training measured in minutes.

Spatial Gains

Spatial gains was coded continuously as the average effect size
for gains in spatial outcomes following spatial training compared
to the control group.

Transfer Distance Within Mathematics (Near Versus Far
Math Transfer)

Transfer distance within mathematics (near versus far math
transfer) was coded categorically at the outcome level. If the
raters agreed there was clear overlap between the skills practiced
during training and the skills measured on the posttest, the effect
was categorized as near math transfer (e.g., origami-based spatial
training and outcome measures of geometry). If there was not
clear overlap between the skills practiced during training and the
skills measured on the posttest, the effect was categorized as far
math transfer (e.g., origami-based spatial training and arithme-
tic). For full details on how each math outcome was categorized,
see Table 2.

Training Delivery (Concrete Versus Nonconcrete)

Training delivery (concrete versus nonconcrete) was coded cat-
egorically at the study level. If the spatial training included the use
of concrete materials (e.g., blocks, tangrams, paper folding) the
study was coded as concrete. This category included studies where
training had both concrete and nonconcrete elements. If a study
did not use any concrete materials in the delivery of spatial train-
ing (e.g., training was digital practice, paper and pencil work-
sheets), it was classified as nonconcrete.

Posttest Timing

Posttest timing was coded categorically at the study level based
on when posttesting was completed. The categories were (a) im-
mediate posttesting; (b) posttesting between 1 and 7 days after the
completion of spatial training; (c) posttesting 8 days or longer fol-
lowing the completion of spatial training. These categories were
based on Uttal et al. (2013) and provided a roughly equal number
of studies per category.

Control Group

Control group was coded categorically at the study level based
on the type of control group used. Studies were classified as hav-
ing a business-as-usual control if the children in the control
group did not complete any additional training sessions beyond
their usual classroom lessons. Studies were classified as having
an active control if children in the control group completed the
same number of training sessions as the experimental group, but
either practiced skills in a nonspatial domain (e.g., crossword
puzzles), or in two cases, practiced a mathematics skill, such as
counting.

Experimental Design

Experimental design was coded categorically for each study as
either a randomized controlled trial if participants were randomly
assigned to conditions, or a quasi-experimental study if the design
was based on preexisting groups.

Publication Status

Publication status was coded categorically for each study as ei-
ther published if they were published in a peer-reviewed journal,
or unpublished if they were (i) an unpublished dissertation, (ii) a
study that had yet to be submitted for review, or (iii) a study that
the authors had not and did not plan to submit for review.

Analytical Approach

Effect sizes were calculated using the Comprehensive Meta-
Analysis Program (Borenstein et al., 2005). Effect sizes were
estimated using Hedges’s g, a standardized mean difference sta-
tistic (experimental group vs. control) that corrects for small
sample bias (Hedges, 1981). Hedges’s g values were calculated
using mean differences scores and reflect the estimated mean dif-
ference in pre-post performance by the experimental group

Table 1
Summary of Inclusion Criteria for the Meta-Analysis

Inclusion criteria Description

1 Includes at least one mathematical/numerical outcome measure
2 Includes at least one spatial training group and one control group
3 Has a causal, pretest-posttest design
4 Has either a random or quasi-experimental study design
5 Includes effect sizes for intervention effects, or sufficient data so that effect

sizes can be generated by the reviewers
6 Based on a human population of any age
7 Written in English (or a suitable translation is available)
8 Data/article available before March 1st, 2020
9 Outlines new data, that is, is not a review article
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compared to the control group. All effects were coded so that
positive values reflect positive effects of the experimental group
over the control group.
Meta-analyses and metaregressions were completed in RStudio

(Version 1.3.1056) using the robumeta package (Fisher & Tipton,
2015). As outlined in Table 2, several studies included more than
one mathematics outcome measure (i.e., contributed more than
one effect size to the meta-analysis) which resulted in dependence
in the data. Previous studies have dealt with this dependence by
creating an unweighted average effect size for any study that
includes multiple outcome measures. However, this practice leads
to reduced statistical power and a loss of information (Fisher &
Tipton, 2015). Instead, we used robust variance estimation (RVE)
which allows for the inclusion of multiple effects from a single
study, and controls for the dependencies between these effects
(Fisher & Tipton, 2015; Tipton & Pustejovsky, 2015). RVE calcu-
lates weights based on the correlated effects method and applies
small sample corrections (Tipton, 2015). Following Tipton (2015),
we set this correlation coefficient (Spearman’s rho) at .8. We also

completed sensitivity analyses to determine the effect of varying
the value of the correlation coefficient from q = .1 to q = 1.0 (Tan-
ner-Smith & Tipton, 2014). Sensitivity analysis is a form of qual-
ity control. It is used in meta-analysis to determine whether
summary effects are robust to assumptions made during analysis,
that is, to determine that the choice of correlation coefficient does
not lead to substantial differences in the effect sizes reported.
Finally, we reviewed the degrees of freedom for all analyses and
flagged any results with fewer than four degrees of freedom as
these should be interpreted cautiously due to increased risk of
Type I error (Tanner-Smith et al., 2016).

Between-study heterogeneity (T2) and between-study variance
(I2) were reported for all analyses. T2 provides an estimate of the
variance in true effect size and is measured using the same metric
as the effect. For each main effect we also reported Prediction
Intervals (PI) to give a range of the true study effects. These are
calculated as mean effect 62(T) where T is Tau (Borenstein et al.,
2017). In contrast, I2 is a metric of how much between-study varia-
tion is attributable to systematic (true) variance as opposed to

Figure 2
Forest Plot of the Effects of Spatial Training on Spatial Measures

Note. The diamond represents the overall average effect size and confidence interval (Hedges’s g) and each square represents the effect size for each
study (horizontal lines represent confidence intervals). Note that the effect sizes shown here are for illustrative purposes only and vary to a small degree
from the RVE analysis. The average generated from the values shown in this plot does not take into account that some studies contributed multiple
effect sizes. CI; Confidence Intervals. See the online article for the color version of this figure.
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random sampling error (Borenstein et al., 2005). Benchmarks have
been set for values of I2, such that values of 25%, 50% and 75%
have been defined as low, medium and high ratios of variance,
respectively (Higgins et al., 2003). Low I2 values are favourable as
they indicate that observed heterogeneity is predominantly due to
random sampling and not due to study differences.
We first calculated the main effects of spatial training on a)

spatial performance and b) mathematics performance using
RVE. We then used regression models within the robumeta pack-
age to investigate moderator effects. Each moderator was entered
into the model individually, that is, all moderators were not
entered at the same time. For categorical moderators, we com-
pleted an omnibus significance test—the Hotelling’s T2 test for
multiple-contrasts (Tipton & Pustejovsky, 2015)—executed
using the Wald-test function in the clubSandwich package in R
(Pustejovsky, 2017). To follow up on any significant effects, we
compared effect sizes between categories. As all moderator anal-
yses included fewer than 40 studies, the significance level of the

F-test was adjusted to .01 (Tanner-Smith et al., 2016). Studies
missing information for one of the moderators were excluded
from the analysis for that moderator.

For reporting purposes, forest plots were generated for the
main effect of spatial training on both spatial and mathematics
performance. The effects reported in these plots are unweighted
average effect sizes for each study and are shown for illustrative
purposes only. These averages differ from the values generated
through the main analyses because the plots do not take depend-
encies into account.

Publication Bias and Small Study Effects

In addition to including publication status as a moderator vari-
able, we took several other precautions to guard against publica-
tion bias and small study effects. To ensure that the assumption of
independence was met, we reviewed all studies by the same author
to ensure that no two studies were based on the same sample. As

Figure 3
Forest Plot Showing the Effect Sizes of Spatial Training on Mathematics Outcomes

Note. The diamond represents the overall average effect size and confidence interval (Hedges’s g) and each square represents the effect size for each
study (horizontal lines represent confidence intervals). Note that the effect sizes shown here are for illustrative purposes only and vary (to a small
degree) from the RVE analysis. The average generated from the values shown in this plot does not take into account that some studies contributed multi-
ple effect sizes. CI; Confidence Intervals. See the online article for the color version of this figure.
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described in Gunnerud et al. (2020), we investigated publication
bias for our main effects in three ways. First, as noted above, we
used moderator analysis to compare published to unpublished
studies. Next, as recommended in Rodgers and Pustejovsky
(2021), we examined funnel plot asymmetry using both effect-size
level funnel plots to diagnose selective outcome reporting (disag-
gregated effect sizes), and study-level funnel plots to diagnose
selective publication (aggregated effect sizes). Funnel plots are a
graphical representation that show an effect size (x-axis) plotted
against its standard error (y-axis). Cases with higher standard
errors are plotted at the bottom of a funnel plot and the vertical
line down the middle of the plot shows the average effect size. An
asymmetrical funnel plot with more studies on the right of the ver-
tical line would suggest bias, that is, selective reporting bias for
funnel plots with disaggregated effect sizes, and publication bias
for funnel plots with aggregated effect sizes. We used contour-
enhanced funnel plots that additionally show bias for different
levels of two-tailed p-values (Peters et al., 2008). We visually
inspected funnel plots for asymmetry and tested this asymmetry
statistically using robust Egger’s Regression, that is, the precision-
effect estimator with standard error (PEESE) and precision-effect
test (PET) for disaggregated dependent effects (Rodgers & Puste-
jovsky, 2021). As a final measure of publication bias, we

completed trim and fill analysis to estimate the number of missing
studies in our main analyses and the potential effect that these
studies would have on the reported effect sizes (Duval & Tweedie,
2001). The outcome of these tests for publication bias are pre-
sented in the next section.

Data Availability and Acknowledgment of Preregistration

We acknowledge that this study was not preregistered. All data,
supplementary material, and annotated analyses with the accompany-
ing R code can be accessed on our OSF page: https://osf.io/8yn7m/

Results

Descriptive Information

The main meta-analysis on the effects of spatial training on
mathematics included 89 mathematics outcomes taken from 29
studies. In total, 3,765 participants (Experimental N = 2,403; Con-
trol N = 1,362) were included in the meta-analysis. Across studies,
the mean number of mathematics outcomes reported per study was
3.07 (min = 1, max = 9). Characteristics of each of the studies are
presented in Table 2. The effect size for the meta-analysis

Table 3
Results of Moderator Analyses for the Effect of Spatial Training on Mathematics Outcomes

Heterogeneity Treatment effects

Moderator m k I2 T2 F b (Hedges’s g) SE 95% CI t df p

Continuous variable moderators
Age (years) 29 89 63.54 .07 .051 .01 [0.02, 0.08] 3.80 7.36 .006
Training dosage (minutes) 27 84 69.24 .09 .000 .00 [�.00, 0.00] 1.12 2.52 .36
Spatial gains (Hedges’s g) 25 76 69.21 .09 .303 .24 [�0.22, 0.83] 1.28 10.8 .227

Categorical variable moderators
Transfer distance within math 29 89 64.75 .08 11.1 6.48 .01
Far transfer 26 77 .203 .07 [0.06, 0.34] 3.01 24.02 .006
Near transfer 7 12 .653 .12 [0.34, 0.97] 5.49 4.65 .003

Training delivery 29 89 67.25 .08 10.9 21.5 .003
Concrete 20 45 .416 .08 [0.25, 0.58] 5.29 17.10 , .001
Nonconcrete 13 44 .052 .09 [�0.14, 0.24] .60 10.70 .562

Type of control group 29 89 72.07 .11 1.26 19.9 .275
Business as usual 18 56 .334 .09 [0.14, 0.53] 3.59 16.50 .002
Active control 11 33 .180 .10 [�0.05, 0.41] 1.78 9.76 .107

Posttest timing 26 82 63.19 .07 .87 10.5 .446
Immediate 5 16 .200 .20 [�0.36,0.76] 1.01 3.80 .374
Between 1 and 7 days 9 34 .126 .09 [�0.08, 0.33] 1.42 7.82 .195
8 days or longer 12 32 .298 .09 [0.11, 0.49] 3.43 10.30 .006

Experimental design 29 89 71.14 .10 1.93 25.6 .176
RCT 14 52 .174 .09 [�0.03, 0.37] 1.90 12.6 .081
Quasi-experimental 15 37 .362 .10 [0.15, 0.58] 3.66 13.7 .002

Publication type 29 89 73.13 .11 .06 9.4 .813
Published 22 71 .269 .08 [0.11, 0.43] 3.50 20.45 .002
Unpublished 7 18 .317 .18 [�0.13, 0.76] 1.75 5.83 .131

Note. These results are based on RVE moderator analyses run separately for each moderator of interest. k = number of effect sizes; m = number of
studies for each moderator; I2 = true heterogeneity; T2 = variation in effect sizes between studies; 95% CI = 95% confidence interval; df = degrees of
freedom. For the analyses of the continuous moderators (top of table), b values represent the slope coefficient estimates and are a measure of the effect
(Hedges’s g) of each moderator against the intercept; p = p-value of the t-tests that compare each moderator against the intercept. For the analyses of
categorical moderators, b values indicate the effect size (Hedges’s g) for each level of the moderator compared against zero; F = F-value associated
with an omnibus Wald (HTZ) test, used to test the null hypothesis that the average effect size is the same across all levels of the moderator; p = p-value
of HTZ Wald tests for overall moderator effects and p-value of t-tests that compare each level of each moderator against zero. Where the degrees of
freedom are less than 4, there is a high chance of Type 1 error and results should be viewed as unreliable. This is the case for training dosage and imme-
diate posttest timing.
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investigating the effect of spatial training on spatial outcomes was
based on 25 studies with 72 effects, and a total sample size of 3,311
(Experimental N = 2,109; Control N = 1,202). The mean number of
spatial outcomes reported per study was 2.88 (min = 1, max = 12).
Characteristics of the studies are available as supplementary material
on our OSF page: https://osf.io/8yn7m/

Overall Effect of Spatial Training on Spatial Outcomes

The overall effect of spatial training on spatial reasoning was g =
.521, SE = .06, 95% CI [.41, .60], PI [�.03, 1.07], p , .001.
Between-study variability, T2, was estimated to be .08, with approxi-
mately 65% of the variance (I2 = 65.49) attributable to systematic/
true variance as opposed to random error. Varying the assumed cor-
relation between the within-study effect sizes from .1 to 1, had no
impact on the overall effect, including standard error, and minimal
impact on estimates of heterogeneity, that is, correlation of .1; I2 =
64.96, T2 = .08; correlation of 1; I2 = 65.64, T2 = .08. Figure 2 shows
a forest plot of the average effect size for each study as well as the
overall effect. As noted earlier, this plot was generated for illustration
purposes and is based on an average effect for each study. Note there
was some evidence of publication bias (see Appendix B for details or
visit https://osf.io/8yn7m/). An adjusted effect size of .49 was calcu-
lated and reported hereafter as the most accurate estimate of the
effects of spatial training on spatial outcomes.
These results replicate the meta-analytic findings of Uttal et al.

(2013), who found a comparable effect of spatial training on spa-
tial reasoning (g = .47). Note that the present study includes only
four studies reported in the Uttal et al. (2013) meta-analysis.

Moreover, while most studies in the Uttal et al. (2013) meta-analy-
sis were conducted with adolescents and adults, all but one of the
studies in our analysis were carried out with children. Thus, our
findings replicate and extend Uttal et al.’s findings that showed
spatial thinking is a highly malleable construct. This finding satis-
fies a critical prerequisite in the effort to improve mathematical
performance through spatial training.

Overall Effect of Spatial Training onMathematics
Outcomes

The overall effect of spatial intervention on mathematics out-
comes was g = .279, SE = .07, 95% CI [.14, .42], PI [�.37, .93],
p , .001. Between-study variability, T2, was estimated to be .11,
with approximately 72% of the variance (I2 = 72.22) attributable
to systematic/true variance as opposed to random error. Varying
the correlation between the within-study effects from .1 to 1 had
no impact on the overall effect of SE. This adjustment led to small
differences on estimates of heterogeneity, that is, correlation of .1;
I2 = 71.86, T2 = .11; correlation of 1; I2 = 72.32, T2 = .11. A forest
plot summarizing the effects of spatial training on mathematics
outcomes across individual studies is shown in Figure 3. As noted
earlier, this plot was generated for illustration purposes and is
based on an average effect for each study. This is why there is a
slight discrepancy between the effect size reported above and
throughout the article (g = .28) and the overall effect size reported
in Figure 3 (g = .27).

Figure 4
Correlation Between Age (Years) and the Effects of Spatial Training on
Mathematics Outcomes

Note. This is a zero-order correlation between the average effect size of spatial training on
mathematics outcomes per study. This correlation is not based on the RVE moderator analy-
sis; instead if an individual study included three math outcomes, the average effect across all
three outcomes was calculated. See the online article for the color version of this figure.
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Moderator Effects

The results of the moderator analyses are reported in Table 3. Of
the three continuous variables examined, only age was a statistically
significant moderator. Figure 4 presents a scatterplot of the relation
between age (years) and the average effect of spatial training on
mathematics outcomes per study. Contrary to the sensitive period
hypothesis, there was a positive association between age and the
effects of spatial training on mathematics, r(27) = .49, p = .008.
This finding suggests that transfer of gains from spatial training to
mathematics increases as children develop.

Of the six categorical variables examined, two emerged as statisti-
cally significant moderators. The first was training delivery (Concrete
vs. Nonconcrete). Training that included concrete materials led to
larger gains in mathematics (mean effect (g) = .416) compared to train-
ing that had no concrete component (mean effect (g) = .052) (b = .36;
p = .003). The second significant moderator was transfer distance
within mathematics. On average, transfer for mathematics measures
that were highly overlapping with the spatial training exercises (near
math transfer) was associated with larger effect sizes (mean effect
(g) = .653) than for mathematics measures with less overlap (far math
transfer; mean effect (g) = .204) (b = .45; p = .014).

Figure 5
(a) Study Level, Contour-Enhanced Funnel Plot of Aggregated Effect Sizes for Studies
Investigating the Effects of Spatial Training on Mathematics Outcomes, and (b) Effect
Size Level, Contour-Enhanced Funnel Plot of Disaggregated Effects Sizes for Studies
Investigating the Effects of Spatial Training on Mathematics Outcomes

Note. Key for color codes: White indicates .10 , p , .05; light gray indicates .05 , p , .01;
Dark gray indicates p , .01.
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Publication Bias

The effects of spatial training on mathematics performance were
similar for published studies (mean effect (g) = .269) compared to
unpublished studies (mean effect (g) = .367) (b = .05; p = .810) (see
Table 3). A Wald test confirmed no significant effect of publication
type as a moderator, F (9.40) = .06, p = .813, I2 = 73.13, T2 = .11.
To further assess publication bias, we first generated a contour-
enhanced funnel plot of aggregated effect sizes, that is, one effect
size per study. Visual inspection of the plot suggested funnel plot
symmetry (Figure 5a) and the PEESE test was not statistically sig-
nificant (p = .253). To diagnose selective outcome reporting, we
also generated a contour-enhanced funnel plot of disaggregated
effect sizes. Visual inspection of the plot suggested funnel plot
symmetry (Figure 5b) and the PET test was not statistically signif-
icant (p = .433). Finally, using the trim and fill method we also
found no indications of missing studies given the funnel plot
asymmetry. Thus, our results do not appear attributable to signifi-
cant publication bias or small-study effects.

Discussion

In this study, we addressed the question of whether and to what
extent spatial training transfers to mathematics performance.
Although decades of evidence from behavioral and brain science
have demonstrated close connections between spatial and mathe-
matical thinking, establishing a causal relation has been met with
mixed effects. For the first time, the present study reports on a
comprehensive and detailed meta-analysis of the effects of spatial
training on mathematics. Our results indicate that spatial training
provides a highly effective means for improving spatial skills (g =
.49) as well as showing significant transfer to mathematics per-
formance (g = .28). Thus, spatial training appears to benefit per-
formance in both spatial and mathematical domains. However, our
results also indicated moderate to large between-study heterogene-
ity in effects, suggesting the need to better understand the specific
conditions under which transfer occurs.
Age, use of concrete manipulatives, and type of transfer (i.e., how

closely the mathematical outcome measures aligned with the train-
ing) all significantly moderated the effects of spatial training on
mathematics. In general, as the age of participants increased from
3–20 years, the effects of spatial training also increased in size. Stud-
ies that used concrete materials (e.g., blocks, puzzle pieces, paper
folding) to train spatial thinking were more effective than studies
that did not use concrete materials (e.g., computerized training). In
terms of transfer, larger transfer effects were observed on mathemat-
ics outcomes more closely aligned to the training program (i.e., near
math transfer) when compared to outcomes more distally related to
the spatial training provided (i.e., far math transfer). On average, the
effect size of spatial training on far mathematics transfer outcomes
was .20 compared to a notably larger effect on near mathematics
transfer outcomes, .65. None of the other moderator variables exam-
ined (training dosage, spatial gains, posttest timing, type of control
group, experimental design, publication status) were significant.
Moreover, analyses of publication bias and selective outcome report-
ing were nonsignificant. Overall, our results support prior research
and theoretical claims that spatial training may be an effective means
for enhancing mathematical understanding and performance. As dis-
cussed further below, the implications of these findings have

potentially significant and far-reaching consequences. However, this
study also makes it clear that this area of research is in its infancy
and many questions remain; perhaps most notably, the need to better
understand the mechanisms that underlie transfer.

Interpreting Effect Sizes

Our main effect of .28 indicates the average number of standard
deviation units by which the intervention group outperformed the con-
trol group. Unfortunately, this and other effect size estimates are not
inherently meaningful and do not readily translate into practice and
application (Funder & Ozer, 2019; Hill et al., 2008). This raises the
question of whether an effect size of .20 for far math transfer, or even
a more liberal estimate of .28 that included near math transfer as well,
represents a large enough effect to be practically meaningful. To
address questions such as these, researchers have argued that effect
sizes should be judged in comparison to empirically established
benchmarks (Hill et al., 2008). In adherence to this guideline, we
interpret the present findings in terms of how they compare to (i) nor-
mative student growth trajectories in mathematics, and (ii) effect size
results from other mathematics and cognitive training interventions.

The overall effect of .28 reported in this study is comparable to
the annual gains that occur in Grades 6–10 on U.S.-based nationally
normed tests of mathematics (see Bloom et al., 2008; Hill et al.,
2008). For younger grades (Kindergarten-Grade 5), where annual
gains are much larger, our effect of .28 is comparable to about
25–50% of the annual gains that occur in mathematics. Against this
benchmark, the effects observed in the present study appear quite
large, especially considering how short the training durations were
(ranging from 5 mins to 44 hrs). However, caution is warranted as
these benchmark estimates are based solely on U.S. data and from
standardized achievement tests. Our sample included studies from
around the world, though predominantly from White, educated,
industrial, rich, democratic (or WEIRD) samples, and included
mathematics measures that were a mix of researcher-developed and
normed achievement tests. Whether the annual gains demonstrated
by American students are typical and generalize to other popula-
tions remains unknown. Furthermore, larger effect sizes are
expected to occur on researcher-developed math outcomes, where
there is often a more explicit link between the intervention and out-
come measures (Lipsey et al., 2012). Thus, the comparisons noted
above likely represent an overestimation of the actual effect size.
Nonetheless, against this benchmark, the gains observed in the pres-
ent study appear to have practical significance.

Another way of contextualizing our findings is to compare the
effect sizes we observed to those of other educational intervention
studies. Historically, it has been reported that successful educa-
tional interventions tend to have effects between .25 and .50
standard deviations (e.g., Hattie, 2009; Hill et al., 2008; Lipsey &
Wilson, 1993). Against this benchmark, the effect sizes we
observed fall toward the lower end of the spectrum. However,
more recent research suggests much more conservative effects of
educational interventions on academic achievement (Cheung &
Slavin, 2016; Lortie-Forgues & Inglis, 2019). For example, a
meta-analysis by Cheung and Slavin (2016) found an effect size of
.16 for randomized educational interventions and an effect size
of .23 for nonrandomized quasi-experimental studies. Similarly,
research from Lortie-Forgues and Inglis (2019) found substantially
lower effect sizes for large-scale educational RCTs (i.e., .06).
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Lortie-Forgues and Inglis also looked at the effects associated
with math-specific interventions and found a similarly small over-
all effect (.04). The effects reported for this study compare favor-
ably with these estimates. However, the wide range of effect sizes
for educational interventions and differences in methodologies
(e.g., large-scale RCTs vs. quasi-experimental designs) makes it
difficult to situate the current effects with any level of precision.
Arguably, a more parsimonious approach involves comparing

our results to other cognitive training studies. For this purpose, we
turn to the working memory training literature; a large and mixed
literature that, in terms of study design (including typical sample
sizes), aims, and questions of interest, is highly similar to the
spatial training literature. Although exceptions exist, the overall
consensus is that working memory training, including visual-spa-
tial working memory training, does not transfer to mathematics
(e.g., see Melby-Lervåg et al., 2016; Sala & Gobet, 2020;
Schwaighofer et al., 2015). For example, the results of two recent
meta-analyses estimate the effect of working memory training on
mathematics to lie somewhere between .06 and .12 standard devia-
tions (Melby-Lervåg et al., 2016; Schwaighofer et al., 2015).
Moreover, the meta-analysis by Schwaighofer et al. (2015) indi-
cated the effect of working memory training on mathematics was
not moderated by the type of working memory training, verbal
versus visual-spatial working memory. Against this benchmark,
our far mathematics transfer effect of .20 is roughly two to three
times as strong. Interestingly, these findings also suggest that spa-
tial visualization training may be a more effective means for
improving mathematics than visual-spatial working memory train-
ing. This raises the important question, and one that we further
expand on below, of why spatial training may be more optimally
suited to transfer to mathematics than other forms of cognitive
training.

Theoretical Implications

The present study helps advance our understanding of space-
math relations in several regards. At a minimum, the present study
provides ‘proof of concept’ that spatial training can transfer to
mathematics. This finding has theoretical importance because it
demonstrates a causal relation, shifting the focus from whether
to how and why spatial training/instruction might facilitate math
learning performance. Indeed, moving from broad implications to
the specific, the results of the moderator analyses provide new
insights into the conditions under which space-math transfer is
most (un)likely to occur.

Age Effects

Our results indicated a positive association between age and the
effects of spatial training on mathematics. In general, as partici-
pants’ age increased, so too did the effects of training on math.
This result runs contrary to the sensitive period hypothesis, in
which earlier interventions are expected to have larger effects than
later interventions (e.g., see Heckman, 2007). Why did we find
evidence in the opposite direction?
There are several explanations, none of which are mutually

exclusive. One possibility is that mathematical content becomes
increasingly more spatial as one moves from basic to advanced
levels of mathematics. Accordingly, the mathematics outcome
measures used in older aged samples may include mathematics

that is inherently spatial. Another possibility is that higher-level
mathematics affords more opportunities to use and apply one’s
spatial visualization skills. This is consistent with research sug-
gesting that spatial reasoning is more important for conceptualiz-
ing higher-level mathematics (e.g., see Mix & Cheng, 2012).
Thus, as individuals age, they may encounter both a broader range
of mathematical tasks, but also situations in which to use and
apply their spatial visualization skills. Lastly, it is also plausible
that as children age and their metacognition matures, they become
increasingly aware of their spatial thinking and its potential use in
solving mathematical problems. Taken together, these explana-
tions are consistent with evidence that the association between
spatial skills and mathematics is stronger in the higher grades
(Burnett et al., 1979; Mix & Cheng, 2012; Vernon, 1950; Voyer et
al., 1995). Indeed, the role and importance of spatial thinking for
mathematics appears to strengthen over development, not weaken
(Mix & Cheng, 2012). Moving forward, it is clear that much is to
be learned about the role of age and development in uncovering
the mechanisms that underly the space-math link.

Concrete Materials

The results of our moderator analyses revealed significantly bet-
ter outcomes for training with concrete materials versus training
that involved worksheets or digital practice only. Our corpus
included various approaches to incorporating concrete materials.
As noted above, Mix et al. (2020) provided three-dimensional
block constructions that children could rotate and compare to the
choice drawings. Other studies used paper folding exercises as
their spatial training (e.g., Arici & Aslan-Tutak, 2015; Boakes,
2009). What these concrete approaches had in common was train-
ing based on perceiving and acting upon physical objects. It makes
sense that acting on objects would support improvement in spatial
skills, given that spatial relations are instantiated in physical space
—whether by navigating one’s body through space or moving
objects relative to each other or to the viewer. This finding is also
consistent with perception-action and embodiment theories (Barsa-
lou, 2008; Glenberg, 2015; Pecher & Zwaan, 2005; Thelen &
Smith, 1996), which hold that cognition is rooted in perceptual in-
formation generated by bodily movement and actions on objects.
From an embodied cognition perspective, the spatial skill of men-
tal rotation, for example, may develop from massive exposure to
manipulating objects and observing the objects as they move
through various orientations. Similarly, the spatial skill of remem-
bering locations may develop from massive exposure to placing
and locating objects in space. Our finding that spatial training was
more successful when it included such exercises lends support to
these accounts.

The use of concrete materials offers a potential explanation for
previous inconsistencies in the literature. For example, Hawes et
al.’s (2015) failure to replicate the findings of Cheng and Mix
(2014) may be due, in part, to differences in training delivery.
Although both studies trained children’s spatial transformation
skills, Hawes et al.’s (2015) training used a computerized
approach while Cheng and Mix (2014) used concrete materials.
Cheng and Mix (2014) found evidence of transfer to missing-term
problems (3 þ __ = 4), while Hawes et al. (2015) did not. Taken
together, our findings suggest that the use of concrete materials
may be an important variable to consider when designing and
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trying to understand the effects of spatial training on mathematics.
Moving forward, research is needed that directly compares the
effects of using or not using concrete materials in the delivery of
spatial interventions.

Transfer Effects

Larger transfer effects were observed for near mathematics
transfer outcomes than far. This finding suggests that transfer
depends on the degree to which the training and outcome measures
are aligned and recruit similar cognitive processes. This finding
may seem rather obvious, but as we noted earlier, attempts to
show that spatial skills are differentially related to different aspects
of mathematics have not been successful (Mix et al., 2016; Xie
et al., 2020). For example, across a wide variety of studies and
age-groups, prior research indicates roughly equal associations
between overtly spatial aspects of mathematics, such as geometry,
and seemingly less spatial aspects of mathematics, such as basic
numerical skills (Hawes & Ansari, 2020; Mix & Cheng, 2012; Xie
et al., 2020). However, these results are based on correlational
studies, which may mask the time-sensitive nature of these associ-
ations. By relying on causal research designs, the present study
provides new evidence that space-math relations might be more
dependent on task-specific shared processes and strategies than
previously indicated.
There are several ways in which training-outcome alignment

may have impacted the extent of transfer observed. One possibility
is that gains in spatial visualization performance reflect authentic
changes to one’s spatial cognition (specific or general as these
changes may be). These changes, in turn, may prove useful when
performing mathematical tasks that recruit the same processes. For
example, several studies found large gains in students’ geometry
performance following spatial visualization training (e.g., see
Lowrie, Logan, et al., 2019; Lowrie, Harris, et al., 2019). Presum-
ably, both domains shared the need to perform similar mental
operations (e.g., visualizing and transforming objects).
However, another possibility is that transfer occurs—not neces-

sarily due to changes in spatial cognition—but due to changes in
strategy use. The closer the training resembles the types of mathe-
matics problems under investigation, the more likely one is to rec-
ognize strategies and reasoning employed in the spatial context as
useful to the mathematical context. Indeed, such priming has pre-
viously been hypothesized as one reason why transfer may be
observed from space to mathematics, despite limited evidence of
change to one’s spatial reasoning abilities (e.g., see Cheng & Mix,
2014). This difference might help explain why we failed to obtain
dosage effects. Even extremely brief training interventions may be
effective if they afford the learner new spatial insights and strat-
egies to be used during mathematics problem solving. For any
given mathematics problem, there are often myriad ways of both
structuring and solving the problem; with strategies and solutions
varying from primarily verbal and formulaic to primarily visual
and spatial (e.g., the Pythagorean theorem can be solved formulai-
cally but also through pure visual-spatial proofs). In short, spatial
interventions may “prime” individuals to recruit spatial strategies
in mathematics problem solving rather than (or in addition to)
improving the spatial processes themselves.
One such strategy is spatial visualization. On the surface, there

are subdomains of mathematics for which spatial visualization

strategies are overtly useful, for example, geometry. However, the
same spatial visualization processes that serve certain geometry
problems, may also serve arithmetic or other less obviously spatial
mathematical tasks (including other aspects of geometry). There is
evidence that spatial visualization plays a role in how children
mentally organize and model arithmetic problems (Hegarty &
Kozhevnikov, 1999; Huttenlocher et al., 1994; Laski et al., 2013).
For example, addition and subtraction may be conceptualized and
visualized as two sets coming together, taken apart, or recombined
in a variety of different ways. This example highlights the possibility
that the mental operations serving basic arithmetic are functionally
equivalent to those serving more overtly spatial mathematical tasks,
such as geometry and measurement. Said differently, at a very basic
level, the mental operations and associated neural mechanisms that
support the composition/decomposition and transformation of num-
bers (in the case of arithmetic) or objects (in the case of geometry),
might be more similar than they first appear (e.g., see Hawes, Soko-
lowski, et al., 2019).

Moreover, the mental operations and strategies individuals use
to solve mathematics problems change over time and with experi-
ence. Somebody with experience and fluency performing basic
addition may no longer need to engage in spatial visualization
processes to arrive at a solution. This might explain why some
studies have shown evidence of transfer to arithmetic while others
have not. If spatial abilities play a more important role in the learn-
ing of new and unfamiliar content, as many have proposed (e.g.,
Hawes, Moss, et al., 2019; Lowrie & Kay, 2001; Mix & Cheng,
2012; Uttal & Cohen, 2012), then we should expect to see larger
training effects for novel versus familiar math outcomes, and in
this regard, the shared processes that link space and math may
present a moving target. This hypothesis has yet to be tested
directly but suggests an important step moving forward.

The evidence above reveals a critical gap in the training litera-
ture; that is, the need to study and better understand the strategies
and specific processes used by individuals as they solve mathemat-
ical tasks. No studies in our review were designed to address these
gaps. Moreover, there was little evidence of theoretically guided
decisions as to why transfer should occur on the selected math
measures. Without explicit attention to these issues, we are left
with little insight into the specific mechanisms that underly the
space-math association.

Practical Implications

The present findings provide reason to be cautiously optimistic
about the efficacy of spatial training to enhance mathematics learn-
ing and performance. In terms of recommendations for practice or
policy, our findings suggest that spatial training may be most
effective when embedded in practice. This approach resembles
what others have referred to as “spatializing” the mathematics cur-
riculum (e.g., Bruce et al., 2015; Casey & Fell, 2018; Newcombe,
2013). Rather than isolating and training spatial skills as some-
thing separate from mathematics, it is possible that development
of spatial skills and their transfer to mathematics is best achieved
in situ. Mathematics itself may offer fertile grounds in which to
develop and practice a variety of spatial skills. It seems advisable
that interdisciplinary teams of experts, including educators, cogni-
tive scientists, and mathematicians, work together to better
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understand how and when spatial and mathematical thinking inter-
act and potentially codevelop in practice.
Our findings also suggest the use of ‘hands-on’ concrete materi-

als are more effective than spatial instruction that does not use
concrete materials. However, the practical implications that follow
from this are not as straightforward as they might appear. For
example, there were several studies in which computerized train-
ing did result in gains in mathematics performance (Bower, 2021;
Gilligan et al., 2019; Hung et al., 2012). As noted above, more
research is needed to understand the reasons why, and under what
conditions, concrete materials facilitate or fail to facilitate spatial
and mathematics learning compared to approaches which do not
use concrete materials. Moreover, with the advent of new compu-
terized technologies, including innovative touch screen technolo-
gies, there are reasons to be cautious in adhering to the conclusion
that concrete materials are associated with better learning out-
comes than nonconcrete approaches.

Next Steps

Our ability to make practice and policy recommendations relies
on the extent to which we understand when, why, and how spatial
training transfer to mathematics. To quote Lewin (1951), “There is
nothing more practical than a good theory” (p. 169). Indeed, our
review of the literature suggests few efforts to test specific theories
as to why spatial training is expected to transfer to math. Instead,
the majority of studies (including our own), appeared to rationalize
their training studies on the basis of previously reported correla-
tions between spatial and mathematical thinking. We found no
studies designed with the explicit intent to reveal how training
influences the strategies and specific processes used by individuals
to approach and solve mathematics problems. Moving forward,
we highlight the need to be more specific in why transfer is
expected. For example, if shared processing is theorized to under-
lie transfer, what might these shared processes be? Are they
believed to be domain-general or domain-specific? On what math-
ematics measures would these shared processes have the largest
impact and why? Does the degree of shared processing change
over time and with experience with the math task in question?
How does training influence the strategies, and in turn, shared
processes, one uses to approach and solve the mathematics tasks
in question? A better understanding of these underlying mecha-
nisms could have important implications for instruction. For exam-
ple, for some individuals, spatial instruction may be best directed
at highlighting the role and potential use of spatial strategies dur-
ing mathematical problem solving (i.e., “spatializing” mathemat-
ics). This may offer an additional way of seeing, conceptualizing,
and reasoning through a problem. For other individuals, however,
low spatial skill levels may be standing in the way of successful
problem solving in the first place. In this case, it may make more
sense to intervene at the level of spatial processing and target the
development of spatial skills, prior to highlighting their use in
practice. In short, more nuanced and theoretically guided spatial
interventions are recommended moving forward.
An improved understanding of the mechanisms that underlie

transfer may prove useful in explaining two of our more puzzling
findings. That is, the absence of dose-response effects and failure
to obtain evidence that spatial gains were associated with transfer
effects. Priming and threshold effects offer possible reasons for

observing these findings. As discussed above, one explanation for
the observed transfer effects is that the training may have encour-
aged (primed) individuals to adapt or adopt new mathematical
problem-solving strategies. For example, spatial training that
involves practicing spatial transformation skills, such as trans-
forming one shape into another shape, might encourage individu-
als to use a similar strategy when solving linear and area
measurement problems (e.g., see Hawes et al., 2017). In this case,
even a very short bout of spatial training may be enough to encour-
age the use of more effective mathematical problem-solving strat-
egies. This is one reason we may not have observed a linear dose-
response relationship.

Moreover, this account also suggests that gains in spatial think-
ing may not always be necessary to observe changes in mathemat-
ics performance. This may help explain why overall gains in
spatial training may not have been linked to changes in mathemat-
ics performance. This finding may also be explained in part due to
threshold effects. It is possible that spatial training improves math-
ematics up to a point, after which further training has less impact
(Freer, 2017). However, achieving such a threshold will vary
immensely from individual to individual. While a short amount of
training and/or small gains are needed for some individuals to
reach a certain threshold, more extensive training duration and
gains in spatial thinking may be necessary for others to reach this
same threshold. Future research efforts are needed to more for-
mally test these conjectures. Doing so will require more concerted
efforts to understand how spatial training is linked to changes in
strategy recruitment and effective mathematics problem-solving. It
will also require a better understanding of whether and how indi-
vidual differences in one’s baseline spatial skills (and strategy use)
relate to the amount of transfer observed.

The majority of studies included in this meta-analysis had an
explicit focus on training spatial visualization skills. While focusing
on a single type of spatial skill makes the evidence more interpreta-
ble, it also leaves us with many unanswered questions. Are there
other spatial skills that might also support mathematics perform-
ance? We believe the answer is yes. From the studies included in
this meta-analysis there is some limited evidence showing that tar-
geting spatial scaling, spatial perspective taking, and form percep-
tion skills may also be linked to gains in mathematics performance
(Gilligan et al., 2019; Lowrie, Logan, et al., 2019; Mix et al., 2020).
From a shared-processing perspective, there are reasons to theorize
strong links between these spatial skills and specific types of mathe-
matical reasoning. For example, spatial scaling may relate to how
one thinks about multiplication through area models, understanding
how to place and reason about numbers on a number line (e.g.,
zooming in and out of scale), and conceptualizing geometric invari-
ance. These sorts of natural links between specific types of spatial
and mathematical reasoning have scarcely been explored, and yet,
potentially offer the largest opportunities for transfer. Given the im-
portance of training-outcome alignment, there is reason to believe
that these sorts of theoretically guided training approaches may
yield even larger effects than those reported here.

The present study revealed several methodological concerns,
suggesting important next steps moving forward. First, many of the
studies used small sample sizes, suggesting the need for future
training studies to include a priori power analyses and sample size
justification. Second, not one study included a delayed follow-up
posttest at least one month following training. Therefore, we know
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very little about the long-term effects of spatial training on mathe-
matics. On the one hand, the effects of spatial training may be
short-lived and “fade-out,” as is typical of many cognitive and edu-
cational interventions (see Bailey et al., 2020). On the other hand,
the effects may build over time as children become more strategic
and successful at recruiting spatial processes when confronted with
new and unfamiliar mathematics content. According to Bailey et al.
(2017; 2020), interventions that target “trifecta” skills—those that
are malleable, fundamental, and unlikely to develop in the absence
of the intervention—hold the most promise for achieving longer
lasting and impactful effects. Arguably, spatial skills meet these
first two criteria, but whether the third criterion is met likely
depends on the specific type of spatial intervention employed (e.g.,
domain-general spatial training vs. domain-specific spatial training).
Moving forward, the emerging literature on fade-out effects may
provide a useful framework for predicting whether and to what
extent the effects of spatial training on mathematics are durable.
Third, only one study measured participants’ motivation and

training-related expectations. These and other training-related fac-
tors, including participants’ awareness of the intervention’s intent,
are critical to control, as they may influence the ways in which
members of the intervention and control groups respond to the ex-
perimental demands, including the amount of effort exerted during
posttests (Green et al., 2019). Together, these issues represent major
gaps in the literature and until systematically addressed, will continue
to limit the reliability, reproducibility, and ultimately, inferences that
can be made about the efficacy of spatial training on mathematics.

Conclusion

There are reasons to be both optimistic and skeptical about the
future of space-to-math training studies. Perhaps the spatial training
literature is destined for the same fate as the cognitive training liter-
ature, generally, and the working memory literature, specifically
(e.g., see Gobet & Sala, 2020; Sala & Gobet, 2019). As researchers
address the limitations above and more carefully controlled studies
accumulate, the initial effects observed here may in fact represent
an overestimation of the true effects. Alternatively, there may be
something unique about the relation between spatial reasoning and
mathematics that holds genuine promise (e.g., see Hawes, Moss,
et al., 2019). The findings that space-math relations may be linked
through a combination of domain-general, domain-specific, and
strategy-level variables provide reasons to suspect that this may be
the case (Mix, 2019). The same cannot so easily be said of other
cognitive skills (e.g., spatial approaches to mathematical problem-
solving are routine practice; working memory approaches are not).
Indeed, the multiple ways in which space and mathematics are
related may make their relations particularly difficult to study, while
at the same time, offering myriad possibilities for intervention. We
have arrived at a critical juncture in the effort to improve mathemat-
ics through spatial training. While the present study provides evi-
dence that transfer is possible, continued efforts are now needed to
determine how to make these effects stronger and more consistent.
The time is ripe to capitalize on space-math relations, conducting
studies that address the limitations above, while also systematically
testing and revealing the mechanisms that underly these relations.
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Appendix A

Call for Papers

Request for Papers: The effects of spatial training on mathe-
matics outcomes: Meta-Analysis

Spatial skills have been linked to mathematics achievement
in many studies. However, fewer studies have explored the
transfer of spatial training effects to mathematics domains. To
further understand the relations between these domains, we are

conducting a meta-analysis examining the effect of spatial
interventions/training on mathematics outcomes.

We have identified papers through PUBMED, PsycINFO,
ERIC and ProQuest, but to ensure that the findings are as accu-
rate as possible, we are in search of any unpublished data,
including results presented at conferences.

Appendix B

Publication Bias for the Effect of Spatial Training on Spatial Outcomes

A moderator analysis found similar effect sizes for pub-
lished (mean effect (g) = .512) compared to unpublished stud-
ies (mean effect (g) = .567). A Wald test confirmed no
significant effect of publication type as a moderator of the

effects of spatial training on spatial outcomes, F (5.73) =
.161, p = .703, I2 = 66.61, T2 = .08. Second, we generated a
contour-enhanced funnel plot (see Figure B1). Visual inspec-
tion of the plot revealed clustering on one side of the vertical
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line. that is, bottom right quadrant of the plot. We tested
asymmetry statistically and found that while the Rank
Correlation test was significant (rT = .31, p = .031), Egger’s
(1997) Regression test was not (z = 1.40, p = .162). It is note-
worthy that compared to the Rank Correlation Test, Egger’s
Regression test is deemed a more accurate measure of asymmetry
for plots with fewer than 25 studies (which is the case here) (Begg
&Mazumdar, 1994). Taken together, the findings suggest that the
funnel plot is slightly asymmetrical, that is, some publication bias
may be evident. For this reason, we next applied the trim and fill

method and found that approximately 2 studies were missing
given the asymmetry in the plot. The results indicated that adding
these two additional studies would reduce the effect size from g =
.521 (SE = .06), to g = .487 (SE = .09). However, the overall effect
of spatial training on spatial outcomes would remain significant
(p, .001).
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Figure B1
Contour-Enhanced Funnel Plot for Studies Investigating the
Effects of Spatial Training on Spatial Outcomes

Note. Key for color codes: White indicates .01 , p , .05; light gray indi-
cates .05 , p , .01; Dark gray indicates p , .01.
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