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Abstract  Fractions remain a challenging area of school mathematics at every stage of education, 
with impacts that extend far beyond the school years. For this study, researchers engaged in classroom-
based design research over a 6-year period to investigate effective strategies for teaching fractions with 
Canadian students. Participants included 86 teachers (representing 12 collaborative research teams 
spread across 8 school boards) and over 2000 students from Grades 3–10. Quantitative analyses revealed 
significant pre-post gains in students’ fraction knowledge. Qualitative findings revealed some best prac-
tices in fractions instruction, including the importance of focusing on unit fractions and number lines 
to facilitate student sense-making. These findings lead to a detailed discussion of the benefits of (1) 
focusing on unit fractions as a central construct that allows students to meaningfully work with fractions 
and make connections across ideas of increasing complexity; (2) leveraging powerful representations 
as objects-to-think-with that combine concrete and abstract thinking about fractions; and (3) using a 
design research methodology in the context of collaborative work with teachers.
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Résumé  Les fractions demeurent un sujet complexe des mathématiques à l’école, et ce, à chaque 
étape du processus éducatif, avec des répercussions qui s’étendent bien au-delà des années scolaires. 
Pour cette étude, les chercheurs se sont engagés dans une recherche conceptuelle réalisée en classe sur 
une période de six ans afin d’étudier les stratégies qui sont efficaces pour enseigner les fractions aux 
élèves canadiens. Les participants comprenaient 86 enseignants (représentant 12 équipes de recherche 
concertée réparties dans 8 conseils scolaires) et plus de 2 000 élèves de la 3e à la 10e année. Les analy-
ses quantitatives ont montré des gains importants de connaissance des fractions chez les élèves, avant 
et après l’étude. Les résultats qualitatifs ont révélé un certain nombre de pratiques exemplaires dans 
l’enseignement des fractions, notamment l’importance de se concentrer sur les fractions unitaires et 
de manière visuo-spatiale sur les droites numériques pour faciliter la compréhension des élèves. Ces 
résultats ont donné lieu à une discussion étoffée sur les avantages de: 1) se concentrer sur les fractions 
unitaires en tant qu’élément fondamental qui permet aux élèves de travailler de manière pertinente avec 
les fractions et d’établir des liens entre des idées de complexité croissante; 2) tirer parti de représenta-
tions fortes en tant qu’objets de réflexion qui combinent la pensée concrète et abstraite sur les fractions; 
et 3) recourir à une méthodologie de recherche conceptuelle dans le cadre d’un travail collaboratif avec 
les enseignants.

Keywords  Unit fractions · Spatial reasoning · Visual representations · Number lines · Design 
research · Mixed methods

Introduction

Vic and Mo are Grade 7 students who have strengths in some areas of mathematics, but both struggle 
with their understanding of fractions. Both students privately have doubts that even with time and per-
sistence they would be capable of understanding fractions. Outwardly, they make their feelings about 
fractions known; when their teacher introduces the topic, both students groan, and Mo is overheard to 
mutter, “I hate fractions, I just don’t get it.” In today’s class, the two students are working together on 
the problem in Fig. 1, which involves combining 5 partially filled containers, each one-fourth full of 
liquid, to determine the total amount of liquid altogether.

Using a visual model and focusing on the unit of fourths, we might readily see that the total will be 
5 one-fourths (or five-fourths, or 1 and one-fourth) containers worth of liquid. Mo and Vic, however, 
are stumped by this fairly straight-forward fractions addition problem. Their thinking goes something 
like this: Mo says “one-fourth, plus one-fourth, plus one-fourth, plus one-fourth, plus one-fourth is a 
lot of fractions to add together. I’m not very good at fractions, but I know that the top number is called 
the numerator, and the bottom number is called the denominator, and I know we have to do something 

Fig. 1   Visual representation of 5 containers, each one-fourth full of liquid in a question asking students to write a frac-
tion to show how much liquid is in the containers all together
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to these numbers.” Vic hesitantly suggests, “this is an adding problem so maybe it makes sense to add 
up all the numbers on the top and all the numbers on the bottom? That gets us five over twenty.” Mo 
writes “ 5

20
 ” on the page.

Five-twentieths is actually the same quantity as one-fourth (an equivalent fraction), so in answering 
“ 5
20

 ”, Mo and Vic have not actually added the fourths together as they would have done to accurately 
complete the task. They were unable to make sense of the total by combining the fourths, most likely 
because Vic and Mo have some major—but very common—gaps in their knowledge of fractions. At least 
two things are happening here. First, they are confused by the symbolic notation of 1

4
 and have imposed 

some whole number thinking onto the digits in the numerator and denominator positions, treating the 1 
and 4 in the fraction as discreet whole number quantities and adding these together. The second major 
gap in their understanding—closely related to the first and perhaps even more foundational—is that  
these students have not yet grasped that each fraction represents a single quantity defined not by the 
numerals 1 and 4, but by the relationship between the numerator and denominator.

The scenario of Vic and Mo represents a composite of typical student responses that we observed 
consistently over the course of a multi-year research study focused on fractions in Ontario, Canada. In 
fact, 45% of students in the study were unable to answer the question in Fig. 1 correctly on pre-tests. 
Over a 6-year period, we worked with a total of 86 teachers (representing 12 collaborative research teams 
spread across 8 school boards) and over 2000 students (Grades 3–10) to generate a comprehensive data 
set (Yearley & Bruce, 2014; Bruce et al., 2022). We spent an additional 4 years refining teacher resource 
materials and conducting further analyses of the data. Research on learning fractions has shown that 
this is challenging content at every stage of education, with impacts far beyond elementary and second-
ary school (for example, in fields where understanding and accuracy with fractions is critical, such as 
nursing and pharmacology) (Mackie & Bruce, 2016). Importantly, these well-known difficulties with 
fractions have been linked to the under-development of children’s overall mathematical thinking and 
understanding for decades (Charalambous & Pitta-Pantazi, 2007).

As mathematics educators and researchers, we had observed the difficulties students experienced 
learning fractions firsthand. In designing and conducting the study, we aimed to first learn more about 
what was causing students to struggle so much in their understanding of fractions. How, for example, 
did students like Vic and Mo arrive in Grade 7 with such a limited understanding of the meaning 
of fractions? Our end goal was to work with teachers and students to develop sequenced tasks that 
addressed these struggles in understanding. In this study, we asked an overarching research question: 
What instructional strategies support students in the difficult-to-learn area of fractions? Sub-questions 
included: What foundational ideas underpin fractions understanding that seem to be missing in school 
math? And how might visual-spatial representations support students in their understanding of fractions? 
In addition, we asked: To what extent did students’ fraction knowledge improve/not improve over the 
course of the fraction intervention (i.e., as a potential result of our design research approach to fraction 
instruction)? To address these questions, we employed a mixed-methods research design, combining 
both qualitative and quantitative data collection methods and analyses. For our qualitative analyses, we 
report on our study’s complete database, and for our quantitative analyses, we report on a sub-set of 
pre-post assessment data.

Theoretical Framing

Many students struggle with fractions learning, a phenomenon particularly well documented in North 
America and the UK (Bailey et al., 2014; Namkung et al., 2018; Siegler et al., 2011, 2013; Yearley & 
Bruce, 2014). The National Assessment of Educational Progress and the Programme for International 
Student Assessment have shown that fractions reasoning is more challenging for students than whole 
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number reasoning (DeWolf & Vosniadou, 2011, 2015). These challenges are attributed to a range of 
issues and continue to be debated and studied (Avgerinou & Tolmie, 2020; Lenz et al., 2020; Ong & 
Chew, 2021). There are a wealth of findings about fractions learning from intervention studies dating 
back to the 1980s and earlier. More recently, a simple search using ProQuest yields over 500 peer-
reviewed published papers in the past 10 years using the terms “fractions learning” and “challenges.” 
Google Scholar, a relatively broad search tool, yields over 1000 results for the search term “fractions 
learning” for publications from the past decade, suggesting that this continues to be an area of hot pursuit 
both theoretically and practically.

What makes understanding fractions so challenging? In part, the answer lies in their mathematical 
complexity. Fractions have multiple situationally dependent meanings that can involve bidirectional con-
ceptual and procedural thinking (Rittle-Johnson et al., 2015). Depending on the context, a fraction can 
represent: a part-whole relationship (how much of an object or set is represented in relation to the whole 
amount); a part-part relationship (quantity relationships that involve ratios); a measurement (distances 
and equi-distances); magnitude (relative quantities and size); or a mathematical operation (division is 
inherent in any fraction as all fractions can also be expressed as their quotient, but a fraction can also act 
as an operator to shrink or grow other quantities, such as 1

4
 or 5

4
 of a litre) (Mosely & Okamoto, 2008). 

Understanding fractions also involves complex mental processes such as spatial reasoning (Cutting, 
2021) and proportional reasoning (Möhring et al., 2016), which are integral to content areas such as 
probability, measurement, and geometry. Moreover, fractions have been identified in the literature as 
a necessary foundation for understanding algebra, which itself has been flagged as a gateway to higher 
mathematics (Brown & Quinn, 2007; Siegler et al., 2013).

An underlying cause for these challenges identified in the literature—and consistently corroborated 
by our own observations—is that students who struggle with fractions tend to lack an understanding 
of fractions as quantities. Students frequently apply whole number reasoning to fractions, treating 
the numerator and denominator as separate whole numbers rather than as one quantity defined by the 
relationship between these values, as we saw in the vignette at the beginning of this article (Papert, 
2010; Empson & Levi, 2011). The nature of this relationship is defined by context; for example, when 
a fraction represents a part-whole situation, the numerator represents the count and the denominator 
represents the unit. When working with a fraction as a quotient, on the other hand, the numerator is a 
dividend of the denominator. This struggle to understand fractions as quantities leads to difficulty with 
magnitude comparisons (Behr et al., 1992; Bezuk & Bieck, 1993). In our study, and prior to instruc-
tion, when we asked students questions such as, “Which is greater, 2

3
 or 2

5
  ?”, they often selected 2

5
 as the 

greater quantity—attending only to the denominators, and reasoning that 5 is more than 3, so 2
5
 must be 

greater. Our own observations confirmed a lack of understanding of fractions as quantities in students’ 
attempts to represent fractions. When we asked Grade 4 (age 10) students to represent the fraction 4

10
 , the 

range of representations revealed a conflation of part-part and part-whole meanings of fractions with an 
abundance of examples where the students treated the numerator and denominator as whole numbers, 
with an obscured or unclear relationship. In Fig. 2, we present a photo of a student representation of 
four-tenths where they made four stacks of ten square tiles. The student knew that the digits four and 
ten were important, but they were unsure of how the two digits relate to one another and were unable 
to represent this fraction as a quantity meaningfully.

Instructional choices and curriculum guidelines do not always serve to help students make meaning 
of fractions. We have considered whether, particularly in North America, the relatively late formal intro-
duction to fractions contributes to the problem. In Asian countries, where mathematics performance is 
demonstrably higher than in North America, fractions are introduced in the early grades and nearly in 
parallel with whole numbers (Son et al., 2015). This approach may better capitalize on the “integrated 
theory of numerical development,” an important work by Siegler and others (Siegler et al., 2011) which 
posits that we develop our understanding of whole numbers alongside fractions as part of a continuous 
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integrated number system. In addition, multiple studies suggest that in North America, we typically 
move too quickly to memorizing procedures involving fractions, without ensuring students have a solid 
understanding of concepts as basic as fractions-as-quantities. This premature overemphasis on algo-
rithms may actually hinder student understanding in both the short and long term (DeWolf et al., 2015; 
Gabriel et al., 2013a, b; Hasemann, 1981; Saxe et al., 2013). Students may be capable of following 
procedures (such as the “invert and multiply” procedure for dividing two fractions) but may generate 
answers without reason or meaning. This becomes a problem in novel situations, when students struggle 
with the uncertain application of partially remembered rules, creating challenges in later mathematics 
(Brown & Quinn, 2006).

In considering how to address these challenges and make fractions more accessible to students, we 
drew on our experience as researchers and practitioners/curriculum designers in the area of spatial  
reasoning. We were learning a great deal about the role of spatial reasoning in mathematics educa- 
tion from other branches of our research program. Spatial reasoning involves a range of skills that are 
mental (and sometimes physical), including “actions” such as perspective taking and visualization; 
location, orientation, and dimension shifting; transformations and symmetrizing; diagramming and 
mapping; as well as composing, decomposing, and scaling (Davis et al., 2015; Harris, 2021). Spatial 
reasoning training/instruction has been shown to lead to gains not only on measures of geometry, but in 
other mathematical domains, such as number sense and numeration (Bruce et al., 2013b, 2016, 2021; 
Gunderson et al., 2012; Verdine et al., 2014) including performing calculations (Bates et al., 2022; Mix 
& Cheng, 2012). Furthermore, spatial reasoning is malleable—it can be improved across ages and gen-
ders (Bruce et al., 2013b, 2016, 2021; Uttal et al., 2013). Taken together, these and other studies suggest 
the importance of attending to and developing children’s spatial reasoning skills (Bruce et al., 2013b, 
2016, 2021). However, studies also reveal that geometry and spatial sense are given the least amount 
of time and attention in classrooms, particularly in early years math (Bruce et al., 2013a, b; Sarama & 
Clements, 2009), and research findings have had little influence on the re-design of school curriculum to 
date (Sinclair & Bruce, 2015; Mix & Cheng, 2012). An exception would be the recent release of a revised 
curriculum in Ontario, Canada, which was influenced by the authors and colleagues of this article.

Fig. 2   In an exploratory task 
early in the research cycle, a 
Grade 4 student attempted to 
represent 4

10
  by making four 

stacks of ten square tiles each
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In our fractions study, we aimed to leverage what we were learning about spatial reasoning in order to 
increase the effectiveness of instruction in fractions. This is an emerging area of investigation in math-
ematics education; in spite of the known importance of spatial reasoning in children’s math learning, 
there is a dearth of research on the role of spatial reasoning in fractions learning in particular (Cutting, 
2021). A search in Google Scholar for peer-reviewed studies from the past decade using the broad search 
terms “fractions” and “spatial reasoning” yields only 34 results; in ProQuest, the identical search yields 
only 2 results. We hope this study will contribute needed insights in this area.

The challenges outlined here have been clearly documented in the literature and were strongly repre-
sented in our observations of students in this study. Yet we know that a solid understanding of fractions 
is crucial for student success in mathematics. A study by Siegler and colleagues (2012), for example, 
showed that fractions knowledge at age 10 is the strongest predictor of overall success in mathematics at 
age 16. Challenges with fractions can begin at an early age (Bruce & Flynn, 2011) and persist through 
schooling and into adulthood, both in daily activity as well as in careers where fractions misconceptions 
can lead to critical or even fatal errors, such as errors in dosage calculations in medical fields (Ross & 
Bruce, 2009; Mackie & Bruce, 2016). The stakes are high: a fragile grasp of fractions can damage and/
or limit students’ school and career prospects.

Research Methodology

A Design Research Approach

Design research (DR) is a methodology we have adapted to our research because it is well-suited to 
multi-year studies in mathematics education and it involves iterative cycles of designing, testing, and 
refining learning materials. In this study, we were designing, testing, and refining fractions assessment 
items and interactive fractions tasks for students, and we were building a developmental learning tra-
jectory to identify the key milestones and sequencing of fractions ideas. Collins and colleagues (2004) 
explain that this “approach of progressive refinement in design involves putting a first version of a design 
into the world to see how it works. Then, the design is constantly revised based on experience, until 
all the bugs are worked out” (p. 18). As Easterday, Lewis, and Gerber (2018) explain: “DR is different 
from other educational research methodologies in that it studies the effects of previously non-existent 
interventions on learning. Therefore, it is the approach of choice when current interventions are not 
sufficient for promoting the desired learning” (p.151).

Importantly, DR has “the dual goals of refining both theory and practice” (Collins et al., 2004, p. 19), 
which makes it somewhat unique among research methodologies (Easterday et al., 2018). The fractions 
research was conducted in collaboration with educators in the naturalistic world of the classroom in an 
effort to bridge research-practice gaps and advance understanding. This bridging of research-practice 
gaps was described three decades ago by Brown (1992) as a way to accommodate the “messy” and 
complex nature of classrooms in a way that experimental research is not able to do because there are 
too many variables to control (Stahl et al., 2019). According to McKenney and Reeves (2020), design 
research “is powerful for theory building because it privileges ecologically valid studies that embrace 
the complexity of investigating learning in authentic … settings” (p. 82).

This study uses both qualitative and quantitative methods in a mixed methods design. Mixed methods 
are well suited to the complex context and scope of design research because the use of both quantita-
tive and qualitative methods can better shed light on the research problem than either method alone 
(Creswell, 2015; Creswell & Plano Clark, 2011). While qualitative methods can provide insights with 
respect to our main research questions (e.g., how do certain instructional strategies support junior and 
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intermediate students in learning fractions?), quantitative methods can provide an indicator of the degree 
of impact.

Research Context

Participants

In conducting this study, we worked with over 80 teachers of Grades 3–10 and over 2000 students.
The total population of students and teacher participants in the study is summarized below in Table 1.

Research Activities, Process, and Products

The research was conducted in collaboration with educators in the naturalistic and messy world of the 
classroom (Stahl et al., 2019) with 6 years of student data collection across Ontario, Canada, and 4 years 
of additional data analysis and knowledge mobilization.

The participating teachers were all involved in some form of professional learning focused on frac-
tions as part of the research project. Some teachers engaged more intensively as part of a collaborative 
action research group, and some less intensively as part of field test groups that attended a series of 
workshops and then implemented pre-designed tasks in their classrooms. The collaborative action 
research groups (who represented 51% of the participating teachers) met regularly with the researchers, 
usually for 5 or 6 days over the course of a school year or term to co-plan tasks, implement the tasks 
and observe student thinking, and refine the tasks in response to student needs and development (see 
Anderson & Shattuck, 2012; Van den Akker et al., 2006).

These collaborative research meetings followed a general pattern: (i) trialing a task with a group of 
students; (ii) a debrief of how students responded to the co-designed task; (iii) a refinement of this task 
or the design of a new task to build on this learning; (iv) an opportunity to work with students in a class-
room or in small groups to try the new or refined task; and (v) parting for the day with a commitment by 
each participant to try the new/refined task with their own students before the next session. At the end  
of each research cycle (the school year or term in which we were working with a particular group), we 
had the opportunity to spend 1 or 2 days with the teachers to look over all of the tasks we had designed 
and trialed with students that year, including any additional tasks that teachers included between ses-
sions. These sessions included focus group sessions and writing sessions in which the team broke out  
to formally write up the tasks, including any refinements that would help improve functionality.

Over time, this process and the data collected from participating students and teachers formed the 
foundation for developing a sequence of tasks. For each research cycle, we began the process again 
with participating research sites (which included some returning and some new teachers), using the 
most developed sequence of learning materials as a starting point to guide our work together and our 

Table 1   Summary of the total 
study population

Year # of districts # of schools # of teachers Grades Ages* # of students

   1 3 11 16 4–7 9–12 461
   2 3 6 16 3–8 8–13 368
   3 5 18 33 3–9 8–14 856
   4 3 12 17 6–10 11–15 410
   5 1 1 4 9 14 61
   6 2 8 13 7–10 12–15 311

Overall 3–10 8–15 2292
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classroom explorations. As a result, the tasks were co-designed and field-tested in iterative cycles by 
both educators and researchers and carefully sequenced through trials. Over 6 years of progressive 
refinement and testing, we developed the field-tested sequence and the tasks into a resource we called 
the Fractions Learning Pathway—a series of foundational concepts and related tasks that emerged as 
a qualitative product of the design research approach (Van den Akker et al., 2006). We also worked 
extensively to mobilize knowledge in order to share our research products and findings beyond the  
project itself, making curriculum support documents and the pathway freely available at www.​ 
fract​ionsl​earni​ngpat​hways.​ca.

Data Collection and Analysis

Qualitative Data Collection and Analysis

Qualitative data collection included video capture of students in classroom settings, photos and samples 
of student work, one-to-one and small group interviews with students either in classrooms or in quieter 
spaces within the schools, as well as the co-designed lesson plans themselves as they evolved through the 
design research process. Field notes from all debrief and planning meetings with groups of participating  
teachers were also an important data source. These notes often represented a near-verbatim record of 
meetings. Throughout, we continually asked ourselves as a group: what are the main building blocks of 
fractions understanding, and how do these develop in an optimum sequence to support the development 
of these understandings in students? During our extensive debrief and writing meetings at the end of 
each research cycle, sequencing and re-sequencing the learning involved a process of disassembling and 
reassembling the data (Yin, 2011). In the earliest stages of analysis, we coded the data with teachers, 
using a holistic approach, which involved identifying codes and sorting these into categories (Saldaña, 
2016). It was through this process that we identified the clusters of the Fractions Learning Pathway: 
unit fractions, equivalence and fractions comparison, and operations with fractions. At various stages 
throughout the process, members of the research team made analytic memos (Saldaña, 2016) to note pat-
terns emerging in the data. In the later stages, we were able to shift to a nested coding strategy (Saldaña, 
2016), using key terms that emerged from holistic analysis to look for specific codes and sub-codes. 
At all stages, researcher utterances were included in the analysis; according to Saldaña (2016), this is 
appropriate because these interactions were “significant, bidirectional dialogic exchanges of issues and 
jointly constructed meanings” (p. 17).

Quantitative Data Collection and Analysis (L3)

In this fractions study, we also collected pre-post test data from over 2000 students that were cleaned 
to arrive at 1502 matched pre-post assessments. The tests consisted of 16 items on average, and each 
item was scored on a scale from 0 (no response) to 3 (fulsome and accurate response). The scoring was 
completed by the researchers along with participating educators using a moderated marking approach—a 
system of grading student responses which are open-ended and require consistent grading standards. 
We included a process of “second marking”: remarking assessments at random to ensure calibration 
and ongoing consistency among a network of markers (University of Edinburgh, 2021). Watty et. al. 
(2014) provide a good description of the many decades of moderated marking practice in what they 
call “social moderation”:

Social moderation entails multiple assessors judging performances on a specific task, and marking 
them using a common framework in terms of a common standard. … Linn (1993) explains that 

http://www.fractionslearningpathways.ca
http://www.fractionslearningpathways.ca
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social moderation depends on the development of a consensus on standards, and on clarifying the 
performances that satisfactorily meet those standards. A critical aspect of social moderation is 
staff development and the review of discrepancies in ratings between multiple markers (Linn 1993. 
(p. 467)

Once scoring and reliability of randomized piles of responses were complete, we sorted and cleaned 
the data thoroughly (ensuring matched pre and post samples of equivalent items and only matched 
students). The jugs of water task in the opening of this article is an example of a pre-post test item (and 
was also used for brief qualitative student discussions and interviews).

The 1502 student matched sets ranged from Grades 5 to 10. We used these data to capture a bold 
indicator of whether there were gains in student test results. We examined test items in three clusters 
according to the framework established by the Fractions Learning Pathway: (1) unit fractions, (2) 
equivalence and fractions comparisons, and (3) fractions operations (see Table 2).

Findings

Qualitative Findings: Key Insights

The qualitative data analysis revealed two main findings. First, a focus on unit fractions was a powerful 
strategy for helping students to understand fractions. Second, leveraging spatial reasoning—in particu-
lar visual representations that support meaning-making, such as number lines—provided students with 
a variety of entry points as well as flexible tools that help them to apply reasonable solutions to even 
novel situations involving fractions.

Focusing on Unit Fractions as a Foundational Strategy That Builds Understanding

Early in the research process, unit fractions began to emerge as an important foundation for student 
understanding. A unit fraction is any fraction with a numerator of 1. The fractions 1

4
 , 1
27

 , and 1

105
 are all 

unit fractions. Whole numbers are also units. When we add three whole one-digit numbers, the unit 
is one whole. When we have a number such as 549, we have 5 one-hundred units, 4 tens units, and 9 
ones units. The location of the digits matters greatly, just as they do with fractions. Units are the foun-
dation of fractions: when we count fractions, compare fractions, operate with fractions, or measure 
using fractions—these all involve using unit fractions (Bruce et al., 2013a, b; Carpenter et al., 1993; 
Charalambous et al., 2010). We experimented extensively with the deliberate use of language, visual 

Table 2   Summary of pre- and post-test scores for 1502 matched pre-post student tests

T(1501) = −21.56, p < .001, Pre mean = 7.22 (SD = 4.77), Post mean = 9.27 (SD = 4.20)

Pre-test Post-test Effect size 
(Cohen’s d)

Mean SD Min Max Mean SD Min Max

   Overall score 7.22 4.77 0 22.00 9.27 4.20 0 18.00 0.46
   Unit fractions (part 1) 3.52 2.35 0 9.50 4.25 2.27 0 10.00 0.32
   Unit fractions (part 2) 1.69 1.48 0 6.00 1.95 1.55 0 6.00 0.17
   Unit fractions (part 3) 1.84 1.34 0 4.00 2.31 1.22 0 4.00 0.37
   Comparing fractions 2.45 1.91 0 8.83 3.53 2.22 0 8.00 0.52
   Operations with fractions 1.25 1.98 0 12.00 1.49 2.59 0 14.00 0.10
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diagrams, and tasks that focused on unit fractions in our research, and this led to significant gains in 
student understanding (see quantitative findings below).

We realized that while students had extensive opportunities to count by whole numbers, which 
helps develop their number sense, including a sense of cardinality, ordinality, and magnitude, the 
same was not true for fractions. We developed a variety of tasks centred around counting unit frac-
tions. We can count fourths by saying the count (numerator) followed by the unit, just as we might 
count millimetres or jelly beans or degrees, for example, “1 one-fourth, 2 one-fourths, 3 one-fourths, 
4 one-fourths, 5 one-fourths, 6 one-fourths” and so on. (Note that this is different from 1 and one-
fourth or 2 and one-fourth, and in our experience, students had no trouble in distinguishing between 
the count—an oral strategy—and written fraction amounts.)

In our research, counting by unit fractions proved to be a powerful strategy for reinforcing unit 
fraction thinking. Once the students were counting by unit fractions, other areas of fractions—such 
as comparing and adding fractions and, by extension, multiplying and dividing fractions—became 
less challenging. Using unit fractions, for example, students could add 5 one-seventh units and 8 
one-seventh units to arrive at a sum of 13 one-seventh units by adding or even by counting on without 
much difficulty. They could more easily decompose and re-compose fractions to identify equiva-
lences more easily; for example, they could then identify one whole in seven-sevenths as well as the 
remaining 6 one-seventh units to see that 13

7
 is the same as 1 6

7
 (Fig. 3). Figure 4 uses a number line 

to visually represent this scenario (composing units of sevenths to represent 1 6
7
 ). When the units are 

common, adding fractions is an extension of counting unit fractions. But students could also quickly 
see that adding sevenths and tenths does not work easily because they are not expressed using the 
same unit. So, finding a common unit became a next obvious action. Teachers across every grade 

0 1

5 one-sevenths 8 one-sevenths

Fig. 3   Composing unit fractions of sevenths on a number line to show how 5
7
 and 8

7
 combine to make a total of 13

7
 or 1 6

7

1 42 3 5 6

4

0

One full jug

Fig. 4   Composing one-fourth units on the number line to make a quantity of 5
4
 or 1 1

4
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consistently and enthusiastically reported that fractions counting tasks had a significant impact on 
student understanding of fractions overall.

Advantages of Visual‑Spatial Reasoning as Powerful Thinking Tools for Fractions Understanding

Powerful thinking tools in mathematics are often visual-spatial in nature. The number line is an example 
of a visual-spatial object-to-think-with (Papert, 1980), whether virtual or physical, which was particu-
larly powerful in helping students to work with fractions. This linear model helped students with the 
actions of measuring, addition, and subtraction, but also with understanding concepts such as magni-
tude, density, unitizing, and comparing quantities. We posit that the abstract and concrete, as well as 
conceptual and procedural processes, overlap, and we observed this overlap being naturally instantiated 
in acting with a number line; the overlap is what really makes this a powerful object-to-think-with and 
-to-act-with. Using a number line to consider fractions requires understanding of, and the related actions 
for, partitioning (creating equal linear regions on the line), iterating (sequencing these regions repeat-
edly such as iterations of one-sixth), and disembedding (recognizing the parts not in focus as we hold 
the image of the whole) (Siebert & Gaskin, 2006).

Number Lines in Action

Let us reconsider the task in the vignette at the opening of this article. Students were asked to add 5 
one-fourth litres of water together and state how much water they had all together. Using jugs of water 
may be the most concrete way to join the liquid quantities and see the total quantity. Another option is 
to represent the quantities of water with a vertical or horizontal linear representation. Using a number 
line, we can compose 5 one-fourth units in a fairly simple linear fashion: the tool is abstract in its rep-
resentation of liquid fourths, but we are also operating on the number line concretely.

Suppose now we needed to compare two different quantities: 3
4
 and 3

5
 (Fig. 5). When first consider-

ing these denominators, students may assume that the larger denominator must be the fraction with  
the greater value (fifths are greater than fourths). When we compare these two quantities on a number 
line, we quickly see that the length of the partitions depends on the unit we are considering: units of 
fourths are longer than fifths on the same number line. We can also compare the overall lengths of  
both quantities easily on the number line. Additionally, the number line affords direct comparisons of 
the same fractions but on different scales. For example, by comparing where ½ is located on different-
sized number lines, students are encouraged to focus on the relational aspects of fractions as opposed to 
absolute distances. The number line uses space (and encourages the use of spatial reasoning) as a way 
of grounding, and highlighting for students, the inherently proportional/relational meaning of fractions.

As an illustrative example of the emphasis on unit fractions and the power of the number line, we 
feature here a simple composing-decomposing task from the study. Students were asked to create a 

Fig. 5   A number line with a 
length of 3

4
 highlighted in purple 

and a length of 3
5
 highlighted in 

orange 0

1 4

4

5

1

5

2

5

3

5

5

5
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quantity of 1 7
8
 (a quantity greater than 1 was selected in order to continue pressing for student flexibility 

in thinking about fractions). The task required students to find three fractions with a sum of 1 and 7
8
 . 

After discussion in pairs, many students chose to use a number line as their preferred model. Teachers 
purposely did not provide pre-partitioned number lines, nor rulers, as the very construction of the num-
ber line was part of the thinking process for students in considering the magnitude of 1 7

8
.

One pair of students partitioned their number line into one-eighth units using part of a pipe cleaner 
as their benchmark length for each segment. They folded the pipe cleaner into trial lengths until they 
were satisfied that they had a one-eighth unit to work with for their number line. This pair was able 
to easily grouped eighths on their partitioned number line in different ways in order to decompose the 
total quantity. Equations included simple parsing of the whole and the seven-eighths ( 8

8
 + 3

8
+

4

8
 ) as 

well as less obvious compositions such as1
8
+

10

8
+

4

8
 . Other pairs in the class used paperfolding for 

precision or a halving and re-halving strategy. Other pairs came up with mixed-unit solutions, such as 
1

3
+

1

3
+

1

3
+

5

10
+

3

8
 = 1 7

8
 . These students were able to correctly add fractions with different units without 

converting to a common denominator because they were able to meaningfully compose quantities using 
unit fractions on a number line.

Quantitative Findings

Analysis of the data from 1502 matched pre-post assessments showed a positive increase in fractions 
understanding with an overall effect size of 0.46 (using Cohen’s dav) calculated as follows:

This effect size corresponds to a moderate effect based on Cohen’s guidelines (e.g., see Cohen, 
1988). However, according to more recent guidelines, this effect corresponds to a much larger effect 
(e.g., see Cheung & Slavin, 2016). For this reason, we refer to the overall effects as moderate-to-large 
in magnitude.

For this article, we further analyzed pre-post test data from Grade 7 and 8 students in particular (ages 
11–12). There were over 400 matched pre- and post-tests in this subset (n = 437). This slice of data was 
identified because the students in this subset had the opportunity to work through the full sequence of 
designed tasks from early unit fractions tasks through to multiplication and division with fractions.  
We also used this sample because (1) we were confident that the professional collaboration between 
researchers and teachers was consistent with this grouping of grade 7 and 8 teachers (5 days of col-
laborative work spread throughout the school year), (2) the test items were fully equivalent from pre to 
post, and (3) the data collection of pre and post student tests were of a consistent interval (pre-testing 
in early October and post-testing in late May).

Bayesian analyses of the Grade 7 and 8 student results, specifically Bayes factors, provide a statistical 
way to interpret the degree of change. The statistical model for the results of this study are in favor of 
there being change is about 583,080 times more likely than a model that predicts (models) no change 
across time points. This follow-up analysis, combined with the overall results of Table 2, indicates 
there is clear evidence that students demonstrated significant gains in their fraction knowledge between 
pre- and post-assessment.

The findings in Table 3 are comparable to the overall data set as reported in Table 2, showing 
consistency.

Cohen
�

s dav =
Mdiff

SD1+SD2

2
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Discussion

In this study, we reported on our team’s 6 years of collaborative research working directly in classrooms 
with teachers and their students, on the teaching and learning of fractions. As further discussion, we focus on 
three key insights from the study. The first overarching insight concerns the importance of attending to and 
further developing children’s understanding of unit fractions. A second insight from this study points to the 
value of using powerful visual-spatial representations that support students in thinking about unit fractions 
and that can be acted upon to integrate conceptual and procedural thinking. A third key take-away is that 
the application of a design research approach can be particularly effective for the development of effective 
learning materials and lessons, but also as an in-depth method for propelling gains in student understanding 
(as evidenced in the pre-post student results). We end our discussion by underlining the limitations of the 
study and offering several promising next steps.

Why Unit Fractions are Fundamental to Fractions Teaching and Learning

Unit fractions are the base of all fractions and represent the smallest portion of the fraction we are consider-
ing and therefore always have a numerator of 1. All fractions can be broken down or decomposed to unit 
fractions. We can easily count by unit fractions (1 one-fifth, 2 one-fifths, 3 one-fifths, 4 one-fifths, 5 one-
fifths, 6 one-fifths, etc.), as well as add and subtract using unit fractions. Furthermore, unit fractions help 
us build a sense of quantity in its base form, which can be manipulated—the unit fraction can be composed 
or iterated to generate greater quantities, and quantities can be decomposed to generate the underlying unit 
fractions. In our study, students benefitted greatly from participating in counting games in small groups to 
count up or down using unit fractions. Students created variations of the counting games along the way, 
where for example, when they reached a whole number in their count, they named the whole number 
instead of the fraction number. Using number lines for counting is another variation on an oral counting 
game that leads to a host of variations on the game including “counting up” or “counting down” by unit 
fractions. In our study, unit fractions understanding was central to helping students more readily perform 
operations with fractions. Unfortunately, unit fractions have been largely ignored in North American cur-
riculum resources to date. The focus on units when working with fractions fits naturally with other unit 
thinking across mathematics ideas.

We conclude that the focus on unit fractions—in particular, opportunities to count by unit fractions—
helped students because it allowed them to actually capitalize on their strengths in working with whole 
numbers (such as counting, composing, and decomposing quantities) to support them in internalizing the 
meaning of fractions as quantities.

Table 3   Fraction 
performance at pre- and 
post-test

The 95% credible interval provides a measure of estimate uncertainty, i.e., there is a 
95% probability that the true parameter (mean) lies in the interval that ranges from the 
reported lower to upper ends

95% credible interval

N Mean SD Lower Upper

   Pre-test (%) 223 0.568 0.21 0.540 0.596
   Post-test (%) 223 0.640 0.23 0.609 0.670
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Affordances of a Visual‑Spatial Emphasis on Number Lines as a Powerful Representation

Powerful representations for fractions thinking includes number lines and related linear models such as 
ribbons, rods, and strips. We found that linear models have considerable scope—we can return to them 
over time as fractions concepts become increasingly more complex. In this paper, we provide some 
examples of the role that number lines played in helping students to make sense of a range of fractions 
ideas including simple ideas such as equipartitioning, iterating with unit fractions, and composing and 
decomposing fractions quantities, but also with more complex ideas such as operating with fractions on 
the number line (Bruce et al., 2022). The main insight however goes beyond the value of using number 
lines with students for exploration of these fractions ideas: our researcher team and teachers observed 
consistently that the number line functioned simultaneously as a thinking tool (about fractions ideas) 
and as a tool for action (taking action on the number line to embody those ideas). Typically, one did not 
follow the other (thinking then action, or action then thinking) but rather were jointly developed. The 
physical actions of manipulating the number line (embodied knowing) facilitated complex thinking even 
with the youngest student participants (see Abrahamson et al., 2020; Radford, 2021).

Affordances of a Design Research Approach with Educators

As described, the fractions study applied a design research approach. This involved working in the 
complex environment of classrooms with teachers and their students to (1) conduct spontaneous casual 
interviews with students to help reveal their thinking; (2) trial a range of tasks; (3) reject or refine tasks; 
(4) test out sequences of tasks in different orders and arrangements; and (5) use different representations 
in order to optimize and deepen student learning. Working directly with educators provided tremendous 
insights into student learning and “what works” in classroom contexts. Design research is time-intensive 
as it is iterative in nature with the goal of building and refining materials or products over time. Each 
year of the study involved unique populations which gave the researchers opportunities to continually 
modify the sequences of learning to optimize opportunities for students to develop a deep understanding 
of fractions and working with fractions. The amount of accumulated in-classroom time in this study was 
approximated at 300 h, and there were triple this number of hours working with educators beyond the 
classroom (estimated 900 h). Although not the focus of this paper, the researchers were, over a 6-year 
period, able to scale up the use of tasks and assessment items to ensure reliability (consistency in the 
range of student responses) and validity (functioning of the tasks and learning sequences). Overall, 
the design research approach enabled a slower, more deliberate research structure with opportunities 
to adjust the scale (number of student participants, number of teachers involved, range of assessment 
approaches, and intensity of task design and refinements) over time, and overall, to test the learning 
trajectories that were developed through the process in terms of what types of lesson sequences and 
tasks enhanced student understanding (and which sequences and tasks did not, and therefore required 
rejection or refinement and re-testing). The barriers to applying an extended design research approach 
include the significant time commitment required, sufficient funding and human resources, and being 
able to find willing educators who have a curious disposition and who are comfortable with engaging 
in a design research study that takes place largely in their classrooms. We recognize that these are fairly 
demanding conditions and may not be possible in other contexts.

Limitations

The main limitation of the quantitative results from this study is that we were unable to secure a reliable 
control group. Researchers made two attempts to establish control groups, one with a delayed treatment 
model and one with a distinct geography. In both cases, the educators involved in the control sites were 
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eager to use materials from the study—tasks were precipitously shared by colleagues in treatment groups 
with educators in the control group. We learned this through follow-up meetings with consultants who 
worked directly or indirectly with the teachers. The challenges of successfully applying randomized and 
even quasi-randomized control group methods in educational contexts are well documented (Kelly, 2016; 
Thomas, 2016). In the end, we were not able to use the control group data as the participants were using 
enhanced instruction related to shared and publicly available materials from the earlier phases of the 
study. For these reasons, we turned to Cohen’s d and Bayesian analyses as a more reasonable indicator 
of improvement and impact. However, an important question moving forward is whether the amount 
of change observed would occur in the absence of this particular intervention: We cannot definitively 
answer the question of how the change observed in this study compares to “business as usual” frac-
tion instruction. Nonetheless, the gains reported in the present study offer reasons to be optimistic that 
focusing on unit fractions as central to fractions understanding combined with a liberal use of powerful 
fractions representations offers a viable model of improving the teaching and learning of fractions mov-
ing forward. We even suggest that “business as usual” has led us to the fractions crisis which has been 
so well documented in the last 30 or more years of research, and that the approach offered in this study 
marks a concrete positive way forward.

Contributions and Next Steps

This study offers theoretical and practical contributions to the field of mathematics education related 
to teaching and learning with and about fractions. Theoretically, the study further reinforces the value 
of visual spatial reasoning through the use of powerful representations such as number lines, which 
fuse conceptual and procedural knowledge and applications (Niss & Hajgaard, 2019). Within the frame 
of “objects-to-think-and-act-with,” we see the number line as a dynamic thinking tool which can be 
partitioned and repartitioned (to reflect the units under consideration) and labelled and re-labelled (to 
reflect whichever fractions are under consideration). The number line can also be manipulated itself by 
extending, stretching, or compressing the line, for example. The number line can grow in complexity, 
illustrating density (there are an infinite number of fractions between any two quantities), and in math-
ematical utility for multiplication and division with fractions (such as acting on the number line to find 
two-thirds of one-fourth). We posit that through spatial reasoning, conceptual thinking about fractions 
and procedural operations collide as students construct understanding with the use of the number line.

As a practical contribution, this study points to a productive shift in pedagogical approaches that 
focuses squarely on leveraging the underlying structure of unit fractions as a way to unlock understand-
ing of simple fractions through to performing complex operations with fractions. In this study, we 
developed a pedagogical approach which returns to unit fractions repeatedly during learning sequences 
as the underpinning idea for understanding and working with fractions. This approach is illustrated in 
a series of novel and practical field-tested lesson materials for use by educators, including assessment 
questions with student response samples, engaging tasks with video and explanatory notes, and learn-
ing sequences made freely available (www.​fract​ionsl​earni​ngpat​hways.​ca) and further elaborated and 
crystalized in a professional resource book for educators (Bruce et al., 2022). The research has also influ-
enced policy in Ontario, with supplementary curriculum resources being generated by the researchers 
and colleagues. One 28-page PDF commissioned by the Ontario Ministry of Education entitled Paying 
Attention to Fractions, K-12, for example, can be found at https://​www.​fract​ionsl​earni​ngpat​hways.​ca/​
pdf/​LNSAt​tenti​onFra​ctions.​pdf.

In terms of next steps for research, we welcome further use of and testing of the educational materials 
generated through this research project in different school contexts. But more specifically, we believe  
the emphasis on teaching using unit fractions and applying the use of unit fractions thinking needs 
greater attention in curriculum documents, resources, and professional learning programs for teachers.

http://www.fractionslearningpathways.ca
https://www.fractionslearningpathways.ca/pdf/LNSAttentionFractions.pdf
https://www.fractionslearningpathways.ca/pdf/LNSAttentionFractions.pdf
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