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A B S T R A C T   

Higher spatial skills are associated with increased interest, performance, and creativity in STEM fields (Science, 
Technology, Engineering, Mathematics). However, evidence for causal relations between spatial skills and STEM 
performance remains scarce. In this study, we test the extent to which mechanical problem solving, a spatially 
demanding STEM activity, facilitates spatial performance. Participants (N = 180) were randomly assigned to one 
of four training conditions: mechanical reasoning with a hands-on component; mechanical reasoning without a 
hands-on component; an active control condition involving spatial training with cross-sectioning; and an active 
control group involving a reading exercise. All participants were tested immediately before, after, and one-week 
following training. Both mechanical conditions were associated with enhanced spatial visualization performance, 
an effect that was similar for both conditions and remained stable across immediate and delayed post-tests. These 
findings suggest that mechanical problem solving is a potentially viable approach to enhancing spatial thinking.   

For a while I gave myself up entirely to the intense enjoyment of picturing 
machines and devising new forms. . . . The pieces of apparatus I conceived 
were to me absolutely real and tangible in every detail, even to the 
minutest marks and signs of wear. I delighted in imagining the motors 
constantly running. . . . In less than 2 months I evolved virtually all the 
types of motors and modifications of the system which are now identified 
with my name. (Tesla, 1919/1995, p. 65) 

1. Introduction 

This quote provides a glimpse into the mind of Nikola Tesla, the 
famed mechanical engineer and inventor. Central to Tesla’s inventive 
creativity, including the invention of the induction motor, was his ca
pacity to “picture” and operate on objects in his mind as if they were real 
(Tesla, 1995; von Károlyi, 2013). This type of thinking bears striking 
resemblance to what is often referred to as spatial thinking; the ability to 
generate, recall, transform, and manipulate visual-spatial information 
(Lohman, 1996). Critically, Tesla is not alone in the importance he 
placed on spatial thinking. Many other scientific advancements were 
said to have relied heavily on spatial thinking, including Einstein’s 

theory of relativity, the discovery of the structure of DNA, and mapping 
the spread of disease (Newcombe, 2010, 2016). 

In addition to anecdotal evidence, there is strong empirical support 
for the importance of spatial thinking in scientific discovery and inno
vation (Kell, Lubinski, Benbow, & Steiger, 2013). For example, spatial 
skills have been found to uniquely predict creativity and technical 
innovation in the workplace (Kell et al., 2013). Especially strong re
lations have been revealed between spatial thinking and STEM perfor
mance (Science, Technology, Engineering, and Mathematics; Wai, 
Lubinski, & Benbow, 2009). Evidence from large-scale longitudinal 
studies (N = 400,000) have found spatial skills to strongly predict which 
students enter, and succeed in STEM disciplines, even after taking verbal 
and quantitative reasoning into account (Lubinski, 2010; Shea, Lubinski, 
& Benbow, 2001; Wai et al., 2009). 

This evidence, coupled with the growing need to increase the num
ber of qualified STEM professionals (Fayer, Lacey, & Watson, 2017), has 
led to increased efforts to better establish and elucidate the underlying 
mechanisms that potentially link spatial thinking and STEM perfor
mance. In this paper, we ask whether and to what extent engaging in a 
STEM-relevant skill, mechanical problem solving, transfers to spatial 
visualization performance. More specifically, we examine the effect that 
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a brief mechanical training intervention has on participants’ spatial 
visualization performance compared to two active control conditions. 

1.1. Malleability of spatial thinking 

Given the close link between spatial skills and STEM performance, an 
important question concerns the extent to which spatial skills are 
malleable and transferable. That is, can spatial thinking be improved 
through training, and if so, does training generalize to related domains 
such as science and mathematics? Findings from a recent meta-analysis 
indicate that spatial thinking not only can be improved through training, 
but that these effects also appear durable and transferrable to other 
spatial tasks not directly trained (Uttal et al., 2013). In fact, improve
ments in both trained and untrained measures were nearly identical, 
with effect sizes approaching 0.5 standard deviations. These findings 
suggest that spatial thinking is a highly malleable cognitive construct, 
with potentially significant and far reaching implications for STEM 
education. 

However, the evidence regarding the extent to which spatial training 
generalizes to STEM performance has been met with mixed and largely 
inconclusive results. For example, while there is some evidence that 
spatial training generalizes to mathematics performance (e.g., see 
Hawes, Moss, Caswell, Naqvi, & MacKinnon, 2017; Cheng & Mix, 2014; 
Gilligan, Flouri, & Farran, 2017), there is also evidence suggesting the 
contrary (e.g., see Hawes, Moss, Caswell, & Poliszczuk, 2015; Cornu, 
Schiltz, Pazouki, & Martin, 2019; Xu & LeFevre, 2016). Further 
complicating the issue are the relatively few tightly controlled and 
adequately powered studies. By and large, researchers have used un
derpowered quasi-experimental (non-randomized) study designs to 
investigate transfer effects (e.g., see Hawes et al., 2017). Thus, more 
tightly controlled experiments are needed to test for causal relations 
between spatial thinking and STEM performance. The current study fills 
this gap by employing a randomized controlled study, involving two 
active control groups: A mental cross-sectioning training group to test 
for the specificity of transfer (Active Control 1) and a reading control 
group to control for test-retest effects (Active Control 2). 

1.2. Approaches to spatial training 

Investigations of causal relations between spatial thinking and STEM 
performance have assumed a directionality of effects. To date, most 
spatial interventions have approached training either through repeated 
exposure to spatial tests (e.g., repeated practice with mental rotation 
items; Wright, Thompson, Ganis, Newcombe, & Kosslyn, 2008) or 
spatially demanding computer/video games (e.g., Tetris; Sims & Mayer, 
2002). This approach assumes a directionality in relations in which 
more “basic” and narrowly defined spatial skills are hypothesized to 
underlie more advanced STEM-related performance and disciplinary 
practice. It is common practice to train participants on a single psy
chometrically defined spatial skill, such as mental rotation, and then test 
for transfer on more broadly defined and domain-relevant skills, such as 
mathematics or engineering (e.g., see Hawes et al., 2015; Cheng & Mix, 
2014; Gilligan et al., 2017; Sorby, 1999). However, it is also possible 
that spatially demanding activities, of the type inherent in many STEM 
activities, such as mechanical engineering or architecture, might also be 
important sources for improving spatial thinking. 

The purpose of the present study was to further examine this idea 
through a brief intervention that involved training participants on a 
series of 3D mechanical reasoning puzzles. We were interested in 
whether exposure to domain-relevant skills (i.e., mechanical problem 
solving) might facilitate performance on untrained measures of spatial 
visualization. As noted above, this approach is novel in that it reverses 
the directionality of transfer typically assumed. Rather than train par
ticipants on abstract objects that are not explicitly connected to a spe
cific STEM domain/skill, we test the possibility that spatial thinking can 
be improved through directly interacting with a domain-relevant STEM 

activity, mechanical reasoning. Because this approach is better aligned 
with current and emerging STEM curricula and educational practices (e. 
g., makerspaces), it avoids the opportunity costs potentially associated 
with isolated spatial training approaches. For example, the time and 
effort used to train participants on a single spatial skill, such as mental 
rotation (Hawes et al., 2015), potentially takes away time and effort that 
could be spent training spatial thinking through more naturalistic, 
contextualized, and educationally relevant STEM activities (e.g., making 
activities as described in Ramey, Stevens, & Uttal, 2020). 

1.3. Theoretical underpinnings of the current study 

1.3.1. Descriptive accounts of relations between mechanical reasoning and 
spatial visualization 

There are several reasons why mechanical problem solving may 
enhance individuals’ performance in spatial visualization tasks, 
including measures of mental paper folding and mental rotation. Both of 
these measures have been strongly linked to spatial visualization, 
though the consensus seems to be stronger for paper folding (Carroll, 
1993; Lohman, 1988; McGee, 1979; Michael, Guilford, Fruchter, & 
Zimmerman, 1957) than for mental rotation (see Linn & Petersen, 
1985). Ontologically, present day definitions and tests of spatial abilities 
originate from the development and use of three-dimensional mechan
ical reasoning tasks of the early 20th century (Hegarty & Waller, 2005; 
Smith, 1964). These early mechanical tests involved a combination of 
both physical and mental manipulation and provided the groundwork 
and inspiration for paper-and-pencil assessments of spatial abilities (see 
Smith, 1964). A look at the early definitions of spatial abilities reflect 
their mechanical origins. For example, Thurstone (1950) defined spatial 
visualization as “the ability to imagine the movement or internal displace
ment among the parts of a configuration that one is thinking about” (p. 518). 
Against this background, perhaps it should be of little surprise that 
descriptive accounts of the cognitive processing involved in mechanical 
problem solving are conceptually similar – if not isomorphic – to those 
ascribed to spatial visualization (Harris, Hirsh-Pasek, & Newcombe, 
2013; Hegarty, 2004). For example, the ability to imagine solutions to 
problems that require complicated, multi-step manipulations and/or 
simulations of spatially presented information is common to both spatial 
visualization and mechanical reasoning tasks (Hegarty & Sims, 1994). 
Indeed, spatial visualization has been posited as a primary means for 
how people reason about mechanical systems (Hegarty, 1991, 2004);an 
approach that involves evaluating the physical structure of the system 
and then mentally simulating in piecewise fashion the fundamental re
lations of the component parts, eventually allowing one to make sense of 
the system as a whole. To summarize, spatial visualization and me
chanical reasoning are operationalized in similar ways and appear to 
rely on similar multi-step reasoning and problem-solving strategies. 

1.3.2. Empirical accounts of relations between mechanical reasoning and 
spatial visualization 

Critically, there is also empirical support for shared cognitive pro
cessing of mechanical reasoning and spatial visualization. Prior research 
has revealed strong positive correlations between spatial visualization 
skills and mechanical problem solving (Hegarty & Sims, 1994; Hegarty 
& Steinhoff, 1997; Kozhevnikov, Motes, & Hegarty, 2007). For example, 
Hegarty and Sims (1994) found mechanical reasoning to correlate with 
mental rotation at r = 0.60 and with mental paper folding at r = 0.76. 
Moreover, there is a long history of factor analytic studies demonstrating 
that both constructs load on the same factor (Hamilton, Nussbaum, 
Kupermintz, Kerkhoven, & Snow, 1995; Humphreys, Lubinski, & Yao, 
1993; Smith, 1964); a finding that perhaps speaks to the fact that spatial 
visualization assessments were borne out of mechanical reasoning tasks 
(Smith, 1964). Taken together, the available evidence suggests that 
spatial visualization and mechanical reasoning may recruit highly 
similar cognitive resources. Thus, it is possible that experience with one 
task may facilitate performance in the other. In the present study, we set 
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out to test this hypothesis and examine the extent to which mechanical 
problem-solving transfers to spatial visualization performance. Based on 
the evidence reviewed above, we had reasons to expect near transfer 
from mechanical reasoning to spatial visualization tasks. 

1.4. Enhancing spatial visualization through active vs. passive mechanical 
reasoning 

Prior research indicates that spatial visualization performance, 
particularly mental rotation, can be improved following spatial training 
approaches that involve an active ‘hands-on’ feedback component (e.g., 
see Adams, Stull, & Hegarty, 2014; Wiedenbauer & Jansen-Osmann, 
2008; Wiedenbauer, Schmid, & Jansen-Osmann, 2007). As theorized 
by Wohlschläger and Wohlschläger (1998), mental imagery and the 
physical instantiations of one’s spatial imaginings are functionally 
dependent on one another and experience in one should affect the other. 
Research into the neural mechanisms underlying mental rotation further 
implicate the motor system (Wraga, Thompson, Alpert, & Kosslyn, 2003; 
Zacks, 2008). According to Wexler, Kosslyn, and Berthoz (1998), 
“visuomotor anticipation is the engine that drives mental rotation” (p. 79). 
These findings indicate the potential benefits of having participants 
physically interact with the mechanical puzzles and test the accuracy of 
their visualized solutions. Accordingly, the effects of mechanical 
reasoning on participants’ spatial visualization performance should be 
stronger under training conditions in which physical manipulation is 
present than when absent. 

To test this possibility, the present study included two forms of 
mechanical training; a hands-on active approach vs. a hands-off passive 
approach. More specifically, we included two mechanical training 
conditions to distinguish whether the potential gains in spatial skills 
were related to the visualization and/or feedback phase of training. The 
two mechanical reasoning groups trained on an identical set of 3D me
chanical puzzles. In both mechanical conditions, participants were 
required to visualize (or mentally simulate) solutions to a given me
chanical problem. Critically, the groups differed in the feedback phase of 
training. Whereas the active mechanical condition executed their planned 
solutions to the problems by directly interacting with the puzzles, par
ticipants in the passive mechanical condition observed video recordings of 
the correct solutions to the problems. Because both groups differed only 
in the feedback phase (and not in their need to engage in spatial visu
alization), we reasoned that any differences in spatial performance may 
be attributed to differences afforded through the active vs. passive 
component of training. In the absence of group differences, any gains in 
participants’ spatial visualization may be attributed to the spatial visu
alization phase. That is, if spatial performance is observed to be similar 
between mechanical conditions, this suggests that the feedback phase 
(active vs. passive) has little influence and would provide stronger 
support for the spatial visualization phase of training. 

1.5. Aims and hypotheses of the present study 

The general purpose of the present study was to test the effects of 
mechanical training on spatial visualization performance. We hypoth
esized that compared to two active control groups (i.e., mental cross- 
sectioning and reading), participants assigned to either mechanical 
training condition would demonstrate gains in spatial visualization 
performance. This prediction was based on the shared-processing ac
count and the need to engage in multi-step spatial visualization pro
cesses across both mechanical conditions. 

A more specific aim of the present study was to further test the effects 
of active vs. passive mechanical training on participants’ spatial visu
alization performance. Based on prior research indicating the benefits of 
active participation, we hypothesized that the active mechanical con
dition would confer even greater benefits to participants’ spatial per
formance than the passive mechanical condition. 

To further test the specificity of the mechanical training, we included 

an active control condition which involved training participants on 
mental cross-sectioning problems (see C. A. Cohen & Hegarty, 2014). 
This condition was included to provide a more stringent comparison 
than the reading condition, allowing us to directly compare the poten
tially differential effects of two different forms of visualization training. 
Although we had reason to believe that mental cross-sectioning would 
facilitate mental cross-sectioning performance (replicating the findings 
of C. A. Cohen and Hegarty, 2014), we were less certain that this form of 
training would be as effective as mechanical training in facilitating 
spatial visualization performance (as assessed through mental rotation 
and mental paper folding measures). Specifically, we hypothesized that 
mechanical training would more effectively facilitate spatial visualiza
tion performance than mental cross-sectioning due to the greater need to 
engage in multi-step spatial visualization processes (e.g., Hegarty & 
Sims, 1994; Smith, 1964). In summary, based on the shared-processing 
account as well as the potential added benefit of physical manipulation, 
we predicted differential training effects on participants’ spatial visu
alization across all four conditions. 

2. Methods 

2.1. Participants 

One hundred and eighty native English speakers (M = 19.8 years, SD 
= 2.98, range = 18–52 years, 99 females) participated in this experi
ment. Participants were randomly assigned to one of four conditions: 
Active Mechanical (n = 45, 31 females), Passive Mechanical (n = 45, 23 
females), Active Control 1 (cross-sectioning) (n = 45, 21 females), and 
Active Control 2 (reading) (n = 45, 24 females). According to a power 
analysis, this was the number of participants required to achieve a 
power of .80 (α = 0.05) in detecting a medium effect size (f = 0.25) when 
using a one-way ANCOVA (number of groups = 4, numerator df = 3) (J. 
Cohen, 1988; Faul, Erdfelder, Lang, & Buchner, 2007). 

Participants were recruited through the Department of Psychological 
and Brain Sciences Course Credit Subject Pool and by posters located 
around the Indiana University campus. Participants received course 
credit or financial compensation for their participation, had normal or 
corrected to normal vision and reported no history of neurological dis
orders. Informed consent was obtained before the experiment, in 
accordance with the Indiana University Institutional Review Board 
approved protocol. 

2.2. Materials 

2.2.1. Measures and testing procedures 
Participants completed the same four measures before (pre-test), 

immediately after (post-test), and a week after training (delayed post- 
test). These measures included two well-known tests of spatial visuali
zation (Mental Paper Folding and Mental Rotation), one recently 
developed test of cross-sectioning ability (Santa Barbara Solids; C. A. 
Cohen & Hegarty, 2012), and a Visual Search task. We selected these 
assessments because they measure distinct skills. Moreover, mental 
paper folding and mental rotation involve multi-step visualization, 
cognitive processes previously shown to be similar to those involved 
with mechanical problem solving (e.g., Hegarty & Sims, 1994; Smith, 
1964). The visual search task, on the other hand, does not involve spatial 
visualization. Instead, the visual search task is a measure of visuospatial 
perception. Including this measure allowed us to test the specificity of 
transfer between mechanical training and spatial visualization. If me
chanical reasoning provides a means to train spatial visualization skills, 
then we should expect the largest gains to occur on measures of spatial 
visualization. 

The items of each assessment were divided into three groups, so that 
they could be presented before, immediately after, and a week after the 
training session. Due to this, no test items were shown more than once to 
a participant. This was done so that participants would not respond to 
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any stimuli by relying on memory. The order of presentation of these 
item groups was counterbalanced across participants to avoid order ef
fects. The order of presentation of the items within each group was fully 
randomized. Raw scores were used for all analyses. 

2.2.2. Description of measures 
Mental Paper Folding Test (French, Ekstrom, & Price, 1963): Partici

pants were shown a diagram of a piece of paper being folded multiple 
times and then a hole being punched through a specific location. Par
ticipants then indicated how the unfolded sheet of paper would look like 
by selecting among five alternatives. Previous investigations indicate 
that the Paper Folding test measures spatial visualization (Carroll, 1993; 
Linn & Petersen, 1985; Lohman, 1988; McGee, 1979; Michael et al., 
1957), as it requires the multistep manipulation of spatial information. 
This test contained the first 18 items out of the original list of 20 items, 
which were equally divided among the pre-, post-, and delayed post-test 
assessments. 

Mental Rotation Test (Peters et al., 1995; Vandenberg & Kuse, 1978): 
Participants were presented with two-dimensional representations of 
three-dimensional cube figures and then asked to identify which two of 
four figures were identical to the target figure. The correct alternatives 
corresponded to a rotated version of the target figure. Although Linn & 
Petersen suggest that this test evaluates mental rotation ability, other 
studies indicate that this test is also strongly related to spatial visuali
zation (Lohman, 1988; Vandenberg & Kuse, 1978). The test used in the 
current study contained 24 questions from the Peters et al. (1995) 
adaptation of the Vandenberg Mental Rotation Test, equally divided 
among the pre-, post-, and delayed post-test assessments. 

Santa Barbara Solids Test (C. A. Cohen & Hegarty, 2012): Participants 
were presented with images of geometric solids containing a flat plane 

cutting through them. Subsequently, they indicated which 
two-dimensional shape would be obtained if the geometric solid were to 
be sectioned by the cutting plane by selecting among four alternatives. 
According to C. A. Cohen and Hegarty (2012), this test is a measure of 
cross-sectioning ability and is only partially related to spatial visuali
zation. This test contained 30 questions, equally divided among the pre-, 
post-, and delayed post-test assessments. 

Visual Search Task (Saarinen, 1994): Participants were required to 
identify a target pattern among distracting visual information. Partici
pants looked for a local pattern within a global shape. In a background 
that contained randomly assigned letters “L” and “T”, participants first 
looked for a circle of “Ls” (global shape), and then indicated whether 
this circle contained one letter “T” (local pattern). This task did not 
measure spatial visualization, but instead served as a control task by 
measuring our participants’ visuospatial perception. This task contained 
30 stimuli, equally divided among the pre-, post-, and delayed post-test 
assessments. 

2.2.3. Reliability 
The Intraclass Correlation Coefficient (ICC) for test-retest reliability 

of each assessment was calculated by considering the average perfor
mance of participants in the Active Control 2/Reading group across all 
three time points (pre-test, post-test, delayed post-test). We only 
considered these participants when calculating the ICCs, as they took 
part in the only group that did not receive an intervention targeted at 
modifying their spatial skills. The ICC for the Paper Folding test was 0.54 
(fair reliability), for the Vandenberg Mental Rotation test was 0.76 
(good reliability), for the Santa Barbara Solids test was 0.36 (poor reli
ability), and for the Visual Search task was 0.50 (fair reliability). 

Fig. 1. This figure shows the mechanical puzzles used in the present experiment. (1) Scale Balance: There is a wooden bar with 3 weights hung asymmetrically on it, 
such that one side is heavier than the other. The goal is to balance the bar so that it is parallel to the wooden tray that holds the task. (2) Box Flap: One marble is 
located at the bottom of a transparent plastic structure. The goal is to remove the marble from the box. The plastic structure has 2 holes, but only one of them can be 
used to successfully solve the problem. (3) Marble Push: A marble is located within a hollow rubber circle that is positioned on the floor of a transparent plastic cube. 
Underneath the rubber circle there is a PVC structure connecting the floor of the transparent structure with the wooden tray. The goal is to get the marble out of the 
box. (4) PVC Pipe: There is a tube that contains an internal metal platform. The metal platform is located halfway up the tube and has a marble atop it. The goal is to 
remove the marble from the tube. (5) Scale Prop: There is a wooden scale and 3 different weights. The first weight is made of metal, the second is made of wood, and 
the third is made of styrofoam. The goal is to balance this scale parallel to the wooden tray that holds the task. (6) Weight Wheel: There is a large, elevated wheel that 
contains a string within its crevice. The string is attached to a reel on one side of the wheel and a weight on the other side, making up a pulley mechanism. The string 
is attached to the reel through a hole in the center and contains an arm that can be rotated to spin the string. The goal is to make the weight remain elevated at the 
base of the wheel. For further details, please see.(Munoz-Rubke et al., 2018) 
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2.2.4. Mechanical puzzles 
Both mechanical conditions involved training with an identical set of 

3D mechanical puzzles (Munoz-Rubke, Olson, Will, & James, 2018). In 
total, participants were presented with six puzzles: Scale Balance, Box 
Flap, Marble Push, PVC Pipe, Scale Prop, and Weight Wheel (see Fig. 1). 
These names were not divulged to the participants. The Scale Balance 
puzzle was included as a practice item to familiarize participants with 
the training procedure. 

The mechanical puzzles were made of wood, metal, and/or plastic 
and were individually positioned on top of a wooden tray with di
mensions 45 cm × 25 cm x 1.5 cm. Each puzzle was presented alongside 
three tools, one of which was required to solve it. The tools were con
structed out of wood, metal, and/or plastic and their sizes ranged from 4 
to 25 cm along their largest axis (see Fig. 2). Results from a previous 
investigation (Munoz-Rubke et al. 2018), showed that the mechanical 
puzzles had different levels of difficulty. Specifically, Marble Push has 
been found to be the most complicated mechanical puzzle (median =
11.6%, 95% CI = [6.7%, 18.3%]), followed by Weight Wheel (median =
28.7%, 95% CI = [21.7%, 36%]), PVC Pipe (median = 45.9%, 95% CI =
[33.7%, 60%]), Box Flap (median = 47.2%, 95% CI = [35.5%, 63.4%], 
Scale Prop (median = 47.3%, 95% CI = [35.6%, 61.8%], and Scale 
Balance (median = 73.6%, 95% CI = [56.24%, 93.9%]). 

2.3. Experimental procedures 

Following random assignment to a group, participants completed the 
four pre-training assessments (Mental Paper Folding, Mental Rotation, 
Santa Barbara Solids, Visual Search). Then, each participant received no 
more than 15 min of training. The pre-test, training, and immediate 
post-tests were all conducted in a laboratory setting. For all computer 
tasks, including the assessments and the two active control conditions, a 
2013 Apple iMac (16:9 aspect ratio, 2560 × 1440 native resolution) was 
used. All spatial measures were administered using Qualtrics™. 
Although no participants took part in their respective condition for more 
than 15 min (excluding the initial instructions and practice trials), we 
used a hard deadline of 15 min for the Active Control 2 (Reading) 
condition. 

While post-training assessments were administered immediately 
after the training was completed, delayed post-training assessments 
were emailed to participants exactly one week after their involvement in 
the experiment. Participants were required to complete the delayed 
post-training assessment on the same day they received such email. Four 
participants were excluded from the study due to lack of compliance 
with this rule. 

2.3.1. Active and passive mechanical training 
Each puzzle was presented one at a time in a completely randomized 

order. Participants were first presented with a photograph depicting 
each mechanical puzzle, as well as with the three accompanying tools 
used to solve each puzzle (e.g., wrench, rod, paint mixer). A trained 
examiner then communicated the goal of each problem through verbal 
instructions. Only then the examiner introduced the actual 3D puzzle, 
placing it on the desk directly in front of the participant. Participants 
were then given up to 60 s to plan/visualize their solutions to the 
problem. They were told to work as quickly as possible, but to prioritize 
finding the correct solution. They were also instructed not to touch the 
puzzles or tools during this planning phase. However, they were 
permitted to rotate the tray on which the puzzle was positioned to gain a 
complete perspective of the puzzles. 

Each plan comprised selecting one tool out of the three alternatives, 
as well as defining a specific course of action. Following this, partici
pants in the active mechanical condition proceeded to manually execute 
their plans, while participants in the passive mechanical condition 
observed a video in which an experimenter demonstrated how to solve 
each mechanical problem. Note that this was the sole difference between 
conditions. 

2.3.2. Active control 1 (cross-sectioning training) 
Both the task and procedures for the cross-sectioning condition were 

based on the work of C. A. Cohen and Hegarty (2014), which we tried to 
replicate as faithfully as possible. In this training condition, participants 
were presented with pictures of 3D geometric figures on a computer 
screen. Each figure was presented as a static 3D solid (e.g., cube, cyl
inder, pyramid) intersected by a flat plane at a vertical, horizontal, or 

Fig. 2. This figure shows the tools that were available to participants while solving each mechanical puzzle. The first row shows the tools associated with (1) Scale 
Balance, (2) Box Flap, and (3) Marble Push. The second row shows the tools associated with (4) PVC Pipe, (5) Scale Prop, and (6) Weight Wheel. For a detailed 
description of each tool, please see (Munoz-Rubke et al., 2018). 
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diagonal crosscut. Participants were told that they could move the flat 
plane through the shape, while they attempted to draw the intersection 
of the geometric figure and the cutting plane. Once satisfied with their 
drawings of the predicted cross-section, participants were presented 
with the correct drawing of the cross-section. Participants then assessed 
whether both drawings were similar or not. Participants marked with a 
‘+’ sign if both drawings were the same, or with a ‘− ’ sign if the 
drawings were different. A total of 15 geometric figures were presented 
and the experimenter cycled back to any figures that were drawn 
incorrectly. The order in which the geometric figures were presented to 
participants was fully randomized. 

2.3.3. Active control 2 (reading) 
Participants had to read an autobiographical novel written by one of 

the Founding Fathers of the United States. Participants read the text for 
15 min, on the same computer that they used to take the assessments. 

2.4. Statistical procedures 

We used logistic multilevel models and ANCOVAs to analyze our 
data. While we used the logistic multilevel models to evaluate changes in 
performance in each assessment by training condition and across the 
three time points, we used the ANCOVAs to compare performances 
among conditions at the post-test and delayed post-test stages, using 
average performance at pre-test as a covariate. 

Each of the logistic multilevel models was used to evaluate whether 
participants’ solution accuracy in each of the four assessments changed 
as a function of the training condition (Condition: Active Mechanical, 
Passive Mechanical, Active Control 1, and Active Control 2) and time 
(Time: Pre-test, Post-test, Delayed post-test). For each of these four 
models, Participants were included as a random-effect variable, and 
Condition and Time as fixed-effects. Each of these models included our 
participants’ responses to each assessment as the response variable. We 
decided to use logistic models because for each test item, a 0 was 
assigned when participants did not select the correct answer, and a 1 
when they selected the correct response. We choose to report all main 
effects of the logistic multilevel models by means of an Analysis of 
Deviance table with Type III Wald chi-square tests for ease of interpre
tation (McCullagh & Nelder, 1989). For each of these models, we also 
ran multiple comparisons to compare the performance of the training 
groups across the three time points. All multiple comparisons were FDR 
corrected. 

After estimating changes in performance within each training con
dition, we compared the gains obtained at the post-test and delayed 
post-test stages among groups. We ran ANCOVA models, one for each 
assessment at post-test and one for each assessment at delayed post-test. 
In each of these models, Condition was the main predictor, average 
performance at pre-test was the covariate, and average performance at 
either the post-test or delayed post-test was the response variable. For 
each of these models, we also ran multiple comparisons to compare the 
groups pairwise. All multiple comparisons were FDR corrected. 

All statistical procedures were implemented in the R programming 
language. The logistic multilevel models were estimated using the lme4 
package (Bates, Mächler, Bolker, & Walker, 2015) and the multiple 
comparisons with FDR corrections were estimated using the lsmeans 
package (Lenth, 2016). 

3. Results 

3.1. Descriptive statistics for both mechanical training conditions 

Participants in the Active Mechanical condition took an average of 
34.61 s (SD = 12.61) in planning each of their solutions and an average 
of 32.51 s (SD = 8.06) in executing each of their solutions. Participants 
in the Passive Mechanical condition took an average of 36.11 s (SD =
11.81) in planning each of their solutions. Participants in the passive 

group did not have to execute their solutions to the mechanical 
problems. 

Both groups showed similar accuracy rates in mechanical problem 
solving, as participants in the active condition solved 40.4% of the 
mechanical puzzles (SD = 21.5) and participants in the passive condition 
solved 43.5% of the mechanical puzzles (SD = 17.7). 

3.2. Main results 

3.2.1. Mental Paper Folding Test 
We first evaluated whether solution accuracy in the Mental Paper 

Folding Test changed as a function of Condition and Time. An Analysis 
of Deviance showed a main effect of Time (χ2(2) = 40.77, p < .001) and 
an interaction between Condition and Time (χ2(6) = 13.68, p = .033). 
No main effect of Condition was observed (χ2(3) = 5.75, p = .124). 

FDR corrected multiple comparisons showed that the Active Me
chanical group showed higher odds of solution accuracy during the post- 
test than during the pre-test (OR = 1.95, p < .001). Similarly, this group 
showed higher odds of solution accuracy during the delayed post-test 
than during the pre-test (OR = 2.40, p < .001). In contrast, no statisti
cally significant difference was found between the group’s post-test and 
delayed post-test performances (OR = 0.81, p = .263). These results 
indicate that the Active Mechanical group increased their performance 
in the Mental Paper Folding Test following training, and that this in
crease remained largely intact for at least one week (we will refer to this 
pattern as ‘immediate and sustained gains’). 

The Passive Mechanical group also showed immediate and sustained 
gains, as both its post-test (OR = 2.03, p < .001) and delayed post-test 
(OR = 2.10, p < .001) performances were linked to higher odds of so
lution accuracy than its pre-test performance. Additionally, the post-test 
and delayed post-test performances in this condition did not statistically 
differ from each other (OR = 0.97, p = .854). 

For both control groups, no differences were found across time 
points. The Active Control 1 (cross-sectioning) group did not show sta
tistically significant differences between the post-test and the pre-test 
(OR = 1.36, p = .245), the delayed post-test and the pre-test (OR =
1.25, p = .289), and the post-test and the delayed post-test (OR = 1.08, p 
= .660). Nearly identical patterns were observed for the Active Control 2 
(reading) group, as there were no statistically significant differences 
between the post-test and the pre-test (OR = 1.22, p = .575), the delayed 
post-test and the pre-test (OR = 1.16, p = .575), and the post-test and the 
delayed post-test (OR = 1.05, p = .792). 

An ANCOVA model that estimated changes in average performance 
in the Mental Paper Folding test during the post-test, using Condition as 
the main predictor and Pre-test (average performance during the pre- 
test) as a covariate, showed a main effect of Condition (F(3,172) =
3.28, p = .022, η2 = 0.06), a main effect of Pre-test (F(1,172) = 7.75, p =
.006, η2 = 0.04), and no interaction between Condition and Pre-test (F 
(3,172) = 2.30, p = .080, η2 = 0.04). Subsequent FDR corrected pairwise 
comparisons showed that the Active Mechanical group showed higher 
average performances than both the Active Control 1 (p = .031) and the 
Active Control 2 (p = .031) groups. Similarly, the Passive Mechanical 
group also showed higher average performances than both the Active 
Control 1 (p = .045) and the Active Control 2 (p = .031). No further 
contrasts were statistically significant (all ps > .792). 

Another ANCOVA model that estimated changes in average perfor
mance during the delayed post-test, using Condition as the main pre
dictor and Pre-test as a covariate, showed a main effect of Condition (F 
(3,172) = 6.79, p < .001, η2 = 0.10), no effect of Pre-test (F(1,172) =
0.28, p = .594, η2 = 0.00) and no interaction between Condition and Pre- 
test (F(3,172) = 1.76, p = .156, η2 = 0.03). Subsequent FDR corrected 
pairwise comparisons showed that the Active Mechanical group showed 
higher average performances than both the Active Control 1 (p = .001) 
and the Active Control 2 (p = .003) groups. The Passive Mechanical 
group showed a higher average performance than the Active Control 1 
(p = .040), but not than the Active Control 2 (p = .080) condition. No 
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further contrasts were statistically significant (all ps > .191) (see 
Fig. 3A). 

3.2.2. Vandenberg Mental Rotation Test 
The model that evaluated whether solution accuracy in the Mental 

Rotation test changed as a function of Condition and Time showed a 
main effect of Time (χ2(2) = 43.84, p < .001) and an interaction between 
Condition and Time (χ2(6) = 12.94, p = .044). No main effect of Con
dition was observed (χ2(3) = 0.02, p = .999). 

FDR corrected multiple comparisons showed that both the Active 
and Passive Mechanical groups showed immediate and sustained gains. In 
the Active group, both its post-test (OR = 1.84, p < .001) and delayed 
post-test (OR = 1.53, p = .008) performances were linked to higher odds 
of solution accuracy than its pre-test performance. No statistically sig
nificant difference was found between this group’s post-test and delayed 
post-test performances (OR = 1.20, p = .227). Similarly, in the Passive 
group both its post-test (OR = 1.72, p < .001) and delayed post-test (OR 
= 2.03, p < .001) performances were linked to higher odds of solution 
accuracy than its pre-test performance. No statistically significant dif
ference was found between this group’s post-test and delayed post-test 
performances (OR = 0.85, p = .290). 

The Active Control 1 (cross-sectioning) group showed higher odds of 
solution accuracy during the post-test than during the pre-test (OR =
1.60, p = .006). However, they also showed higher odds of solution 
accuracy during the post-test than during the delayed post-test (OR =

1.48, p = .015) and no statistically significant difference was found 
between the delayed post-test and the pre-test performances (OR = 1.08, 
p = .594). This suggest that what was gained immediately following the 
intervention was lost one week later. The Active Control 2 (reading) 
group did not show statistically significant differences between the post- 
test and the pre-test (OR = 1.43, p = .057), the delayed post-test and the 
pre-test (OR = 1.14, p = .403), and the post-test and the delayed post- 
test (OR = 1.26, p = .195). 

An ANCOVA model that estimated changes in average performance 
in the Mental Rotation test during the post-test, using Condition as the 
main predictor and Pre-test as a covariate, showed a main effect of Pre- 
test (F(1,172) = 6.13, p = .014, η2 = 0.03), no main effect of Condition (F 
(3,172) = 0.31, p = .815, η2 = 0.00), and no interaction between Con
dition and Pre-test (F(3,172) = 2.02, p = .113, η2 = 0.03). 

Another ANCOVA model that estimated changes in average perfor
mance during the delayed post-test, using Condition as the main pre
dictor and Pre-test as a covariate, showed a main effect of Pre-test (F 
(1,172) = 16.14, p < .001, η2 = 0.08) and an interaction between 
Condition and Pre-test (F(3,172) = 5.17, p = .002, η2 = 0.07), but not a 
main effect of Condition (F(3,172) = 2.51, p = .060, η2 = 0.05). Sub
sequent FDR corrected pairwise comparisons showed that the Passive 
Mechanical group showed higher average performances than both the 
Active Control 1 (p = .027) and the Active Control 2 (p = .028) groups. 
No further contrasts were statistically significant (all ps > .225) (see 
Fig. 3B). 

Fig. 3. This figure shows the results for each training condition across all time points of data collection. (A) In the Paper Folding test, both mechanical groups showed 
immediate and sustained gains. Compared to at least one of the control groups, both mechanical conditions demonstrated gains immediately following the training, 
as well as one week later. (B) In the Mental Rotation test, both mechanical groups showed immediate and sustained gains. During the delayed post-test, one-week 
later, the passive mechanical condition demonstrated significant gains in mental rotation compared to both control groups. (C) In the Santa Barbara Solids test, both 
mechanical groups showed immediate and sustained gains. (D) In the Visual Search task, the mechanical groups did not show differences in performance across all 
three time points. 
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3.2.3. Santa Barbara Solids Test 
A model that evaluated whether solution accuracy in the Santa 

Barbara Solids test changed as a function of Condition and Time indi
cated a main effect of Time (χ2(2) = 64.05, p < .001) and an interaction 
between Condition and Time (χ2(6) = 27.22, p < .001). No main effect of 
Condition was observed (χ2(3) = 4.97, p = .174). 

FDR corrected multiple comparisons indicated that both mechanical 
groups showed immediate and sustained gains. In the Active group both its 
post-test (OR = 1.66, p < .001) and delayed post-test (OR = 1.70, p <
.001) performances were linked to higher odds of solution accuracy than 
its pre-test performance. No statistically significant difference was found 
between this group’s post-test and delayed post-test performances (OR 
= 0.97, p = .836). Similarly, in the Passive Mechanical group both its 
post-test (OR = 1.75, p < .001) and delayed post-test (OR = 1.76, p <
.001) performances were linked to higher odds of solution accuracy than 
its pre-test performance. No statistically significant difference was found 
between this group’s post-test and delayed post-test performances (OR 
= 1.01, p = .946). 

The Active Control 1 (cross-sectioning) group showed higher odds of 
solution accuracy in the post-test than in the pre-test (OR = 2.48, p <
.001) and in the delayed post-test than in the pre-test (OR = 1.36, p =
.022). However, unlike both mechanical groups, this group’s post-test 
performance was linked to higher odds of solution accuracy than its 
delayed post-test performance (OR = 1.82, p < .001). This suggest that 
part of what was gained right after the intervention was lost a week 
after. 

The Active Control 2 (reading) group did not show statistically sig
nificant differences between the post-test and the pre-test (OR = 1.23, p 
= .199), the delayed post-test and the pre-test (OR = 0.92, p = .542), and 
the post-test and the delayed post-test (OR = 1.33, p = .104). 

An ANCOVA model that estimated changes in average performance 
in the Santa Barbara Solids test during the post-test, using Condition as 
the main predictor and Pre-test as a covariate, showed a main effect of 
Condition (F(3,172) = 3.73, p = .012, η2 = 0.06), no main effect of Pre- 
test (F(1,172) = 3.13, p = .078, η2 = 0.02), and no interaction between 
Condition and Pre-test (F(3,172) = 2.43, p = .067, η2 = 0.04). Subse
quent FDR corrected pairwise comparisons showed that the Active 
Control 1 group showed a higher average performance than the Passive 
Mechanical group (p = .011). No further contrasts were statistically 
significant (all ps > .078). 

Another ANCOVA model that estimated changes in average perfor
mance during the delayed post-test, using Condition as the main pre
dictor and Pre-test as a covariate, showed a main effect of Pre-test (F 
(1,172) = 21.67, p < .001, η2 = 0.11), no main effect of Condition (F 
(3,172) = 1.39, p = .247, η2 = 0.03), and no interaction between Con
dition and Pre-test (F(3,172) = 0.18, p = .912, η2 = 0.00) (see Fig. 3C). 

3.2.4. Visual search task 
We evaluated whether solution accuracy in the Visual Search task 

changed as a function of Condition and Time. An Analysis of Deviance 
showed a main effect of Time (χ2(2) = 7.21, p = .027) and an interaction 
between Condition and Time (χ2(6) = 21.32, p = .002). No main effect of 
Condition was observed (χ2(3) = 1.44, p = .697). 

FDR corrected multiple comparisons showed that for both mechan
ical groups, no differences were observed across all three time points. 
The Active Mechanical condition did not show statistically significant 
differences between the post-test and the pre-test (OR = 0.83, p = .286), 
the delayed post-test and the pre-test (OR = 0.84, p = .780), and the 
post-test and the delayed post-test (OR = 0.80, p = .286). Similarly, the 
Passive group did not show statistically significant differences between 
the post-test and the pre-test (OR = 0.93, p = .579), the delayed post-test 
and the pre-test (OR = 1.03, p = .579), and the post-test and the delayed 
post-test (OR = 1.10, p = .579). 

The Active Control 1 (cross-sectioning) group showed lower odds of 
solution accuracy during the post-test than during the pre-test (OR =
0.60, p < .001) and the delayed post-test (OR = 0.61, p < .001). 

However, we did not find statistically significant differences between 
the delayed post-test and the pre-test (OR = 0.98, p = .887), suggesting 
that participants showed similar levels of performance at the beginning 
and at the end of the investigation. The Active Control 2 (reading) group 
showed higher odds of solution accuracy in the delayed post-test than in 
the pre-test (OR = 1.40, p = .451). No statistically significant differences 
were found between the pre-test and the post-test (OR = 1.27, p = .126) 
and between the post-test and the delayed post-test (OR = 0.90, p =
.478). 

An ANCOVA model that estimated changes in average performance 
in the Visual Search task during the post-test, using Condition as the 
main predictor and Pre-test as a covariate, showed a main effect of 
Condition (F(3,172) = 5.04, p = .002, η2 = 0.08), no main effect of Pre- 
test (F(1,172) = 0.03, p = .842, η2 = 0.00), and no interaction between 
Condition and Pre-test (F(3,172) = 0.95, p = .417, η2 = 0.02). Subse
quent FDR corrected pairwise comparisons indicated that both the 
Passive Mechanical (p = .020) and the Active Control 2 (p = .001) 
groups showed higher average performance than the Active Control 1 
group. No further contrasts were statistically significant (all ps > .080). 

A further ANCOVA model that estimated changes in average per
formance during the delayed post-test, using Condition as the main 
predictor and Pre-test as a covariate, showed a main effect of Condition 
(F(3,172) = 4.44, p = .005, η2 = 0.07), a main effect of Pre-test (F 
(1,172) = 10.07, p = .002, η2 = 0.05), and an interaction between 
Condition and Pre-test (F(3,172) = 4.49, p = .005, η2 = 0.06). Subse
quent FDR corrected pairwise comparisons indicated that both the 
Active Control 1 (p = .005) and the Active Control 2 (p < .001) groups 
showed higher average performance than the Passive Mechanical group. 
No further contrasts were statistically significant (all ps > .063) 
(Fig. 3D). 

4. Discussion 

Nearly a century of research has revealed close connections between 
mechanical reasoning and spatial visualization skills (Smith, 1964). 
However, investigations into the nature of this relationship have been 
limited to self-report, as alluded to in the opening quote by Nikola Tesla, 
and correlational study designs. The purpose of this study was to fill this 
gap in the literature and experimentally probe the potentially causal 
relationship between mechanical reasoning and spatial visualization. 
Overall, our results indicated that both active and passive mechanical 
interventions were associated with improved spatial visualization per
formance. Analyses based on within-group change revealed that both 
groups demonstrated immediate and sustained gains in measures of 
mental paper folding, mental rotation, and mental cross-sectioning. 
Compared to the control groups, both mechanical groups demon
strated gains in mental paper folding immediately following training, as 
well as one week later. There was no evidence of training-induced gains 
in mental rotation immediately following training. However, at the 
delayed post-test, one-week later, the passive mechanical condition 
demonstrated significant gains in mental rotation compared to both 
control groups. The active and passive mechanical conditions demon
strated similar patterns of performance across time points in all four 
measures (i.e., immediate and sustained gains in measures of mental 
rotation, mental paper folding, and cross-sectioning, as well as no dif
ferences in performance in the visual search task). Taken together, these 
findings provide initial evidence and proof of concept that mechanical 
reasoning, a highly spatial but domain-relevant STEM skill, transfers to 
untrained measures of spatial visualization. 

4.1. Active vs. passive mechanical training 

Contrary to our predictions, there was no evidence that the active 
mechanical group was the most effective in improving spatial visuali
zation performance. Although prior research has demonstrated the 
positive effects of hands-on spatial training (e.g., see Adams et al., 2014; 
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Wiedenbauer & Jansen-Osmann, 2008; Wiedenbauer et al., 2007), our 
study failed to show any advantage of solving the mechanical puzzles by 
hand versus passively viewing someone else solve the problems. Our 
results indicated that both mechanical groups demonstrated highly 
similar performance patterns in all four measures enlisted and across all 
three time points. Indeed, both mechanical groups showed immediate 
and sustained gains in measures of spatial visualization, mental 
cross-sectioning, and no major changes in the visual search control task. 
As both mechanical conditions were largely equivalent in terms of their 
overall effectiveness, we conclude that the spatial visualization phase, in 
which participants from both groups had to derive solutions to the 
mechanical puzzles, is the most probable reason for the observed effects 
(a hypothesis we revisit further below). 

Despite highly similar performance patterns, a difference between 
mechanical conditions emerged in the mental rotation test. Our results 
indicated that the passive mechanical group, but not the active me
chanical group, demonstrated greater mental rotation performance at 
the delayed post-test compared to the control groups. One explanation 
for this finding is that the passive group may have benefited from the 
more immediate feedback received during training. While participants 
in the passive group were exposed to immediate feedback following 
their spatial visualization phase, those in the active group received 
feedback through executing their own solutions. It is possible that the 
opportunity to physically manipulate the puzzles provided too much of a 
time lag/buffer between the visualization phase of the training and the 
solution phase. Said differently, the immediate feedback afforded to the 
passive group may have provided a more optimal condition to learn 
about the accuracy of one’s visualized solutions to each problem. For 
participants in the active condition, the opportunity to physically act on 
their visualizations may have been especially harmful in the case of 
incorrect solutions. Moreover, whereas the passive group were informed 
of the correct solutions for each puzzle, the active group were only 
informed of the correct solution if they happened to solve the puzzle 
themselves, through active manipulation. Thus, these differences in both 
the immediacy of feedback, but also insights gleaned from seeing the 
correct solution, may have driven the differences in results between 
mechanical conditions. Follow-up studies are needed to test these 
possibilities. 

4.2. Accounts of improved spatial thinking after mechanical training 

There are several reasons why our mechanical reasoning training 
may have conferred benefits to participants’ spatial performance. Ac
cording to the shared-processing account, transfer of learning from one 
context (mechanical reasoning) to another (spatial reasoning) may have 
occurred due to recruitment of common mental processes. Indeed, as 
mentioned in the Introduction, there is evidence to suggest that me
chanical and spatial reasoning are highly correlated with one another. 
There is a long history of factor analytic studies showing that various 
measures of mechanical reasoning and spatial abilities tend to load on 
the same factor; a finding consistent with the shared-processing account 
(Hamilton et al., 1995; Humphreys et al., 1993; Smith, 1964). One hy
pothesis, and the one that we aimed to test in the current study, states 
that mechanical and spatial reasoning are linked insofar as they both 
rely on spatial visualization. Thus, it is possible that one of the reasons 
why participants’ spatial visualization skills were stronger following 
mechanical training was due to the shared need to engage in multi-step 
spatial visualization processes. According to this view, the mechanical 
reasoning condition may have provided participants with an extended 
opportunity to practice spatial visualization. In turn, this extra practice 
solving spatial visualization problems, albeit through solving mechani
cal reasoning problems, may have driven the post-tests improvements 
observed. That both mechanical reasoning conditions were approxi
mately equal in their effectiveness is potentially due to the common 
need to engage in spatial visualization across both conditions. Our 
finding of gains in measures of spatial visualization, but not in our 

control measure of spatial processing devoid of spatial visualization (i.e., 
a visual search task), lends further support to this hypothesis. Moreover, 
the need to engage in multi-step spatial visualization processes in the 
mechanical conditions (e.g., mental rotation, translation, inferred 
spatial relations, etc.), may explain why the mechanical reasoning 
condition led to better outcomes than the mental cross-sectioning con
dition, which arguably involves a more singular spatial process. This 
explanation also offers insight into why the training effects may have 
been stronger for mental paper folding compared to mental rotation. 
That is, compared to mental rotation, mental paper folding places more 
demands on multi-step spatial visualization processes (e.g., see Harris 
et al., 2013). Taken together, the degree of transfer observed may 
depend on the extent to which the outcome measures required 
multi-step spatial visualization. Although more research is necessary to 
test this possibility, our results suggest that mechanical reasoning may 
be an effective means for training multi-step spatial visualization 
processes. 

The mechanical reasoning conditions may have also facilitated 
spatial performance by providing participants with new insights and 
strategies for solving spatial visualization problems. It has been well- 
established that individuals differ in the strategies they use to solve 
spatial reasoning problems, including measures of mental rotation and 
mental paper folding (Bethell-Fox & Shepard, 1988; Harris et al., 2013; 
Schultz, 1991). For example, a distinction exists between individuals 
who generally employ a more analytic, verbally mediated strategy for 
solving spatial visualization problems compared to individuals who 
employ a more holistic, spatially mediated strategy (Bethell-Fox & 
Shepard, 1988; Schultz, 1991). Critically, higher spatial performance is 
associated with the latter ; (Glück, Machat, Jirasko, & Rollett, 2002; 
Janssen & Geiser, 2010). Thus, it is possible that participation in the 
mechanical training conditions may have prompted individuals to 
engage in more holistic, spatially mediated approaches to spatial prob
lem solving. The adoption of such spatial strategies may have contrib
uted to increased spatial visualization performance after training. To 
test this possibility in follow-up studies, it will be important to collect 
information about the strategy participants use prior to, during, and 
following training. 

To conclude, the present findings add to a large body of research that 
suggest that spatial thinking is a highly malleable construct (Uttal et al., 
2013). Our findings are unique, however, in that they provide evidence 
that mechanical problem solving, a highly spatial but domain-relevant 
skill, transfers to untrained measures of spatial visualization. We inter
pret this finding as evidence for the shared-processing account. In 
addition, we posit that the mechanical reasoning conditions may have 
also yielded spatial gains by means of encouraging participants to adopt 
more effective strategies for solving spatial visualization problems. 
Future research should aim to further probe these, and other plausible 
accounts, in order to better understand the underlying mechanisms that 
support rapid, generalizable, and durable improvements in spatial 
thinking. 

4.3. Implications for spatial training and STEM education 

Our results provide preliminary support that directly engaging with 
STEM content may be a viable and effective means for training spatial 
skills. This approach contrasts with the predominant approach to spatial 
training, which involves repeated exposure to abstract and decontex
tualized spatial stimuli (e.g., 3D cube figures). In addition, a direction
ality of effects is typically assumed, in which spatial reasoning is seen as 
a foundational cognitive ability on which other skills, namely STEM- 
related learning, are based (e.g., see Hawes et al., 2015). However, as 
demonstrated in the present paper, it is also possible that STEM-related 
activities help spatial thinking. This finding raises some important im
plications for both theories of learning and the planning/design of 
classroom-based interventions and instruction. For example, in terms of 
theories of learning, our study challenges assumptions implicit in 
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hierarchical models of learning. That is, the belief that higher-order 
learning depends on lower-level and more basic cognitive capacities 
and concepts. Although there are clear cases in which this model of 
learning is most accurate (e.g., one must learn basic arithmetic before 
advanced algebra), there is also evidence that engaging with ‘high
er-level’ tasks might also work towards strengthening ‘lower-level’ ca
pacities (e.g., see Lyons, Bugden, Zheng, De Jesus, & Ansari, 2018). The 
present findings are but one counter example of hierarchical learning. 
However, because we did not test the effect of spatial training on me
chanical reasoning, it was not possible to directly compare the strength 
of directional and reciprocal effects. The shared-processing account 
makes some important predictions in this regard (see Lourenco, Cheung, 
& Aulet, 2018). First, the degree of transfer will depend on the degree of 
recruitment and reliance on shared underlying mechanisms (e.g., the 
need to engage in spatial visualization). Second, transfer effects are 
expected to be bidirectional and relatively symmetrical in their effects 
on one another. Based on the present findings, as well as prior research 
demonstrating strong relations between spatial visualization and me
chanical reasoning, we hypothesize that training in one domain will 
generalize to the other. Moving forward, it will be important to test this 
prediction, as the findings will further elucidate the mechanisms of 
transfer and the nature of the relationship between spatial and me
chanical reasoning. 

A better understanding of the direction of transfer is important when 
considering classroom-based approaches to spatial training and 
learning. There are risks associated with isolated approaches to spatial 
training (i.e., training spatial skills in isolation from their disciplinary 
use), including risks of the training not working and, in turn, the allo
cation of time and resources that could have been spent engaging in 
spatially demanding STEM content. As argued by Ramey et al. (2020) 
even if isolated spatial training is effective at improving spatial skills, 
“something is being lost by denying students the opportunity to reason with the 
actual tools with which they might be expected to reason spatially in pro
fessional practice” (p. 469). Thus, although tightly controlled training 
approaches have been instrumental in establishing that spatial thinking 
is malleable (Uttal et al., 2013), it is unclear whether this same approach 
should be endorsed as a means of improving STEM performance. The 
findings from our study, albeit still very much lab-based, suggest the 
potential benefits of having individuals interact with 3D mechanical 
problems. A promising avenue for follow-up research involves exam
ining the extent to which the benefits observed in the present study 
translate to more authentic mechanical reasoning educational tasks. For 
example, the rapid rise of ‘makerspaces’ across K-12 education represent 
one such opportunity (Bevan, 2017; Giannakos, Divitini, & Iversen, 
2017). It has recently been shown that ‘making activities’ afford a rich 
context in which to engage in and further develop a variety of spatial 
reasoning capacities (Ramey et al., 2020). Whether or not makerspace 
activities that involve mechanical problem solving transfer to spatial 
reasoning skills will be an important question to address in future 
research. 

4.4. Limitations 

The current study had several limitations. First, the delayed post-test 
was completed in the participants’ homes. Thus, it is impossible to rule 
out the possibility that the delayed post-tests were completed without 
external assistance. However, given random assignment to condition, it 
is likely that the occurrence of such instances would also be randomly 
distributed across groups. Nonetheless, future research should aim to 
create equal testing conditions across all time points of data collection. 
Second, time spent on the computer was not equivalent across groups; 
the two mechanical conditions provided a break from the computer 
while the two active control conditions received no computer break. 
Thus, it is possible that the computer break may have influenced post- 
test performance. However, given that the cross-sectioning group also 
demonstrated improvements in their spatial performance, this 

possibility seems unlikely. To eliminate such a confound it will be 
important in future research to include an active control group that also 
receives a break from the computer during the training phase of the 
study. Third, we did not measure participant motivation or expectancy 
effects. It remains plausible that the two mechanical reasoning condi
tions provided a more motivating training condition, potentially 
increasing one’s interest and investment in achieving success at post- 
test. Fourth, because the Santa Barbara Solids test showed poor reli
ability, and both the Paper Folding test and Visual Search task showed 
fair reliability, the current results must be interpreted with caution. 
Future research will be needed to further explore the causal connection 
between mechanical training and spatial visualization performance. 
Fifth, the power analysis that was used to estimate the sample size did 
not account for the interactions included in the ANCOVA models.1 

Moving forward, an even larger sample size is recommended to imple
ment the study design employed here. For example, a larger sample size 
would better ensure more equivalent baseline performance across 
groups. In the present study, despite randomization, participants 
assigned to the mechanical conditions obtained slightly lower scores 
than the control conditions in several measures. However, it is also 
important to note that this minor difference in baseline performance was 
adequately accounted for in our statistical models. Moreover, our find
ings of sustained gains by the mechanical groups suggest that any initial 
differences in performance were overcome by the training. Sixth, our 
results suggest a potential benefit of receiving passive feedback 
compared to active feedback. However, it is clear that more research is 
needed to further substantiate these results. For example, it is unclear 
why slightly more favorable outcomes were observed in the paper 
folding measure compared to mental rotation. It is also unclear why the 
benefit afforded to the passive condition would be present at the delayed 
post-test but not the immediate post-test. Finally, the small number of 
training trials prevented the opportunity to examine individual differ
ences in training-related improvements and its association with gains in 
spatial thinking. Moving forward, the inclusion of a more extensive 
training intervention will provide an opportunity to address important 
follow-up questions to the current study, including an examination of 
individual differences at baseline, rates of learning, and the impact these 
variables have on one’s spatial performance. 

5. Conclusion 

Our findings indicate that mechanical reasoning may facilitate 
spatial visualization performance. This study adds to a large body of 
research that suggest spatial thinking is a highly malleable construct. 
Our findings are unique, however, in that they suggest that directly 
engaging with STEM content may be a viable and effective means for 
training spatial skills. Moving forward, more research is needed to 
further substantiate the current findings, as the implications of such 
work are of critical importance in the planning and design of classroom- 
based spatial learning. 
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